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Abstract.

This paper introduces a novel Artificial Neural Network (ANN) model for predicting the structural behaviour of moment-
resisting bolted steel connections, with an emphasis on sustainability aligned with UN Sustainable Development Goals 9
(Industry, Innovation, and Infrastructure) and 11 (Sustainable Cities and Communities). Traditional methods like Finite
Element Modelling (FEM) and Component Modelling (CM) are resource-intensive, prompting the development of a new ANN
as an efficient alternative for forecasting shear stress resistance under varying load conditions and design of connection.

The ANN features a feed-forward architecture with nine normalised input variables (e.g., bolt diameter, weld fillet thickness,
beam depth), a single hidden layer of five neurons, and a sigmoid activation function to capture non-linear relationships
inherent in bolted steel connections. The ANN’s weights and biases were initialised using the PyTorch Xavier method to launch
the learning process, with updates to each neuron within a hidden layer via back-propagation, driven by Mean Square Error|
(MSE), gradient descent, and the chain rule, refining the model iteratively until convergence and accurate predictions on unseen
data were achieved.

IAn ANOVA sensitivity analysis identified bolt size and weld thickness as key significant factors (P < 0.05), and k-fold cross-
validation confirmed model generalisability without overfitting within the established boundary conditions of this study.
Results demonstrate an R? of 0.9977 for shear stress predictions, with an average MSE of 0.9 and variance of 1.03, aligning
with benchmarks from prior structural engineering research.

Complementing the ANN, the Product Optimisation Value Engineering (PROVEN) framework applies an attribute-driven
methodology, using relative value indices to evaluate designs against criteria like structural integrity, weight, cost, and
embodied carbon. Case studies of five connector concepts demonstrated PROVEN's ability to select optimal designs, balancing
performance with sustainability.
Overall, the integrated ANN-PROVEN approach vs. traditional methods reduces design time, minimises material use, and
lowers carbon emissions, advancing efficient and eco-friendly structural engineering practices.
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for a given load case using a newly defined ANN prediction
1. Introduction model. This study specifically investigates the performance of
bolted steel connections transferring shear load (kN) from a
supported beam to a supporting column (as shown in figure 1).
The scope encompasses boundary conditions representing shear
loads of 50400 kN and beam/column dimensions of 152-305
mm, with variations of connection parameters including flange
plate thickness, plate size, weld thickness, and bolt diameter.
These parameters establish the range for evaluating connection
performance and training the ANN model within these limits.
The model is to also allow for faster processing time and
ease of use to serve the structural engineer in practice,
minimising the margin of error in the selection of steel
connections. To complement the design selection process of
steel connections, a prioritisation of key attributes to include
structural integrity, sustainability, cost and versatility was
also considered serving as primary inputs to an evaluation

Steel connections play a vital role within the design of a
building to ensure structural integrity is achieved within a
steel framed structure. Existing analytical methods such as
Finite Element Models (FEMs) and component modelling
techniques are time consuming and can be costly to carry
out. The use of Artificial Neural Networks (ANNSs) provides
a time efficient and cost-effective alternative process,
capable of modelling non-linear prediction behaviour
achieving a high level of accuracy. Learning from verified
experimental data, ANNs have been applied to various
structural elements in the construction industry
demonstrating high predictive accuracy as evidenced in prior
research studies.

This research discusses the development of a new evaluation
tool to accurately prescribe suitable steel connection designs
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trade-off tool to achieve an optimised connection design.

Prioritising of attributes using an optioneering approach,

Product Optimisation Value Engineering (PROVEN) refers

to previous published work conducted as part of a completed

PhD program by the principal author (Georgiou et.al 2015).

The key objectives to advance sustainable structural

engineering design were;

¢ A high-accuracy Artificial Neural Network (ANN) model
to predict shear stress resistance in bolted steel
connections, accounting for complex non-linear
interactions;

e Reduction in reliance on extensive physical testing,
thereby lowering material use, cost, and reducing
negatively associated environmental impact;

e Minimising computational time for evaluating steel
connector configurations, enabling faster and resource-
efficient design processes;

o To support a more reliable and sustainable connection
selection methodology that can integrate embodied carbon,
cost, and structural performance into early-stage design
decisions.

Supporting
Column

End Plate

Fig. 1: Bolted end-plate beam-column Steel Connection

1.1 Artificial Neural Network Predictive Model

Artificial Neural networks are essentially a Machine
Learning method inspired by the human brain comprising of
a network of neurons forming the central control system
(Haykin, S., 2009). In a similar way, ANNs comprise of
interconnected neurons with a number of numerical inputs,
multiplied by the weights on their connections with a bias
added and are processed. If the result passes a certain
threshold, the neuron is activated resulting in a numerical
output. The neural network learns by using a continuous loop
of forward propagation to generate an output through the
network and backward propagation to adjust the weights and
biases of the inputs to minimise the margin of error. This
learning process is repeated until the desired loss function is
reached, meaning an acceptable predicted ANN result has
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been achieved (Almeida et.al, 2020). An ANN was defined to
determine the non-linear relationship between the input and
output parameters for the behaviour of bolted steel
connections. The research gap identified is that while prior
ANN-based studies have demonstrated high predictive
accuracy for various structural elements in construction (e.g.,
flexural strength in steel fibre-reinforced concrete [Dong
Zhen et al., 2022], bond strength in fibre-reinforced polymer
bars [Nadim I. Shbeeb et al., 2024], and hybrid FEM-ANN
analysis of adhesive anchors [Almeida & Guner, 2020]), they
do not specifically address the non-linear prediction of shear
stress resistance in moment-resisting bolted steel connections.
Existing ANNs lack integration with attribute-driven
approaches such as PROVEN, a value engineering approach
for optimised design selection, faster processing, reduced
error margins, and sustainability considerations such as
minimised material use and embodied carbon. This gap
necessitated the development of a new feed-forward ANN
with back-propagation coupled with PROVEN.

2. Development of the New ANN

2.1 Feed-Forward ANN Architecture with Back-
Propagation Learning Algorithm

The feed-forward ANN architecture comprises of nine
inputs, a single hidden layer containing five neurons whereby
a transfer function and a sigmoid activation function are
applied to predict the resultant shear stress (kN) within a
single output, as shown in figure 2. The back-propagation
involved training of the network whereby the gradient of the
error was calculated and propagated back through the network,
updating weights and biases for each neuron (Goodfellow
et.al, 2016). This architecture was selected over alternatives
for its accuracy, computational efficiency, and practicality in
modelling complex structural behaviours, to achieve
satisfactory structural integrity aligned with Eurocode 3.

Hidden
Layer

Input
Layer

Output Layer

Fig.2: Schematic of ANN single-hidden layer feed-forward
network
The nine inputs were identified via regression analysis and
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validated with 60 connection variations from a Design of
Experiments (DoE). The input factors such as (e.g., applied
force, weld fillet thickness, bolt diameter) effectively capture
non-linear interactions, avoiding redundancy or omission
seen in structures with fewer or excessive inputs. These
factors are shown in Table 1 (Green Book, 2023; The Steel
Construction Institute, 2013). The single hidden layer with
five neurons was chosen to balance computational efficiency
and predictive accuracy. Configurations with fewer neurons
(e.g., three) led to underfitting, failing to capture intricate
patterns, while more neurons (e.g., ten) caused overfitting.
The chosen five neurons ensured effective convergence
during back-propagation with Mean Squared Error (MSE)
minimisation, maintaining an optimal balance. The single
output, shear stress (kN), supports supervised learning from
validated data, avoiding the complexity of multi-output
models and delivers accurate predictions tailored to analysing

bolted steel connection behaviour within the defined
boundary conditions.
Table 1: Input Factors considered for ANN
2 Range 5
Input Variables Symbol - unit
Min | Max
Applied Force VEd 50 400 kN
Supporting Column depth d_column | 152 305 mm
Supporting Column Width w_column | 152 305 mm
Supported Beam depth d_beam 152 305 mm
Supported Beam width w_beam 152 305 mm
Connection Fin Plate thickness | Fp_thick 2 20 mm
Fin plate dimentions Fp_Dim 150 500 mm
Weld Fillet thickness W _thick 6 16 mm
Bolt Diameter 2 bolt 12 24 mm

It is essential to normalise the input factors into a single range
between 0 and 1 in order for the ANN to reduce the
sensitivity of the network and to improve the training

and accuracy, using Eq.1 (Han et.al, 2011).
(x —mingyq;)

)

(maxyqi—mingyq;)
where; x = input value

The constituents of the ANN network comprised of a transfer
function, a sigmoid activation function, learning rate and
prediction error. To initiate the weights and biases for all nine
inputs across five neurons within the hidden layer, a PyTorch
Xavier Initialisation is used, Eq.2 (Pater et al. 2023; Glorot
et.al, 2010; Paszke et al, 2019).

6 6
W ~ U (— s )
NintNout Nin+Nout

where; ni, = number of inputs, now = number of neurons
gives; W ~ U (-0.654, +0.654)

@)

Figure 3 shows a visual heat map of the distribution of
weight values across the range of -0.654 to +0.654 for
both the inputs and neurons. This visualisation helps
identify how strongly each input contributes to the
network’s predictions, highlights any dominant or
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under utilised connections, and provides insight into the
overall balance and sensitivity of the model during
training.

Heatmap of Custom Weight Matrix (9 Inputs x 5 Outputs)
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Fig. 3: Xavier Initialised Heat Map

The calculated input to each neuron is performed using Eq.3
(Debney, P, 2020) before a sigmoid activation function is
applied, Eq.4 (Goodfellow et.al, 2016).

m
ZWi*Xi+b
i=1

where, w; = weighted value of input, x; = input value, b = bias

3)

1
1+ e™*

4

The primary purpose of the sigmoid activation function is to
introduce non-linearity into the network to effectively map
input values to a predicted output. The sigmoid function was
chosen as it generates binary outputs as either zero or one,
suitable for binary classification problems. As the input values
are normalised to a value between (0 — 1) the sigmoid function
lends itself well as a compatible activation function. The
sigmoid function also has a smooth and continuously
differentiable nature across its entire domain, as well as its
demonstrated effectiveness in prior studies (Haykin, S, 2009).
The final generated output of the ANN will also be between
(0 — 1) and the translated shear stress (kN) is obtained using
equation 5 (Haykin, S, 2009).

y * (tmax - tmin) + tmin (5)
The predicted output of the ANN is treated with the mean
squared error (MSE) to determine the error of margin between
the predicted results vs. actual validated result, using Eq.6
(Haykin, S, 2009).

n

1 5\2
;Z(yi -3
i=0

where; y; = actual value, ¥ = predicted value, n = number
of data points.

(6)
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2.2 Back-Propagation

A back-propagation is then performed through the
network to update the weights and biases of each input for
every associated neuron within the hidden layer to minimise
the MSE through a number of iterations. This is performed
using a gradient of loss Eq.7, derivative of sigmoid function
Eq.8 and chain rule Eq.9 (Haykin, S, 2009).

a

o'(z) = y1-9) ®)
dL _ dL .

8=E=d—yxcs(z) )

The weights are updated using Eq.10, Eq.11 and biases using
Eq.12 (Haykin, S, 2009).

aL

a—wl =0 X X1 (10)
aL

Wlnew = W1 - nx a_Wl (11)

" = by - n x o (12)

3. Experimental Desigh Methodology

The application of Design of Experiments (DoEs)
in this study was critical for the development of a
robust and representative dataset used as part of the
training of the new ANN model to account for the
interactions of all input design variables to learn the
non-linear relationships of bolted steel connectors.
The DoE framework supports both statistical validation
and the iterative process required by the ANN to
generate accurate results (Montgomery, D.C., 2006).
In this study, a stratified sampling technique and custom
fractional factorial was used as part of a DoE approach
to support the scope of this research. A total of 60 tests were
defined to account for variations in input parameters within
the defined boundary conditions of this study (Ahmed, S,
2024). This approach allows for the main effects of the range
and combination of the input interactions to be analysed and
supports the development and prove out of the non-linear
ANN predictive model. The defined test schedule specified,
provides a good grounding for the statistical analysis of results
and machine learning-based modelling.
In contrast, a full factorial design would have produced in
excess of 8000 tests which is not practical and unnecessary
and so the custom fractional factorial design was chosen in
order to reduce the number of tests to 60 runs while
maintaining the key interactions between inputs to achieve
meaningful results. This reduction was made after a
preliminary review of the design matrix had revealed some
test combinations were too similar with each other yielding
repetitive results with minimal contribution to the ANN
training. The strategic approach used in the reduction of tests
was deemed sufficient and at the same time optimised the
available time and resources. The custom factorial design
feature was used within Minitab statistical software in order
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to create a test schedule with a total of 60 runs.

The defined DoE schedule was run using a validated
component software programme ‘Smart Engineer’ to serve as
the target response data for shear stress (kN), shear strain (g),
moment (kNm) and rotation (°). The Smart Engineer
software uses a component model method referencing
the EC3 procedure.

Furthermore, a sensitivity analysis using Analysis of Variance
(ANOVA) within Minitab software was carried out on the
actual data obtained from the Smart Engineer software of all
60 tests. The ANOVA had shown that the regression model
created to evaluate shear stress resistance was statistically
significant, with a model P-value of 0.000. The main factors
that were statistically significant with a p value < 0.05 were;
bolt size, weld fillet thickness, beam depth and applied load
and the combination of these factors explains the variation in
shear stress resistance, shown in table 2. The lack-of-fit test
with a P value of 0.119 indicates no significant deviation in
the data, and so the number of tests was appropriate to capture
the complexity of the system (Choi et.al, 2024).

Therefore, the 60 DoE tests are justified as they provide the
required resolution to differentiate significant input factor
effects from insignificant ones and to ensure reliable
interpretation of interaction effects.

Table 2: ANOVA Sensitivity Analysis

Analysis of Variance
Source DF AdjSS AdjMS F-Value P-Value
Model 36 752783 20910.7 137.51 0.000
Linear 23 712970 30998.7 203.86 0.000
Bolt Size 7 4027 5753 3.78 0.007
d_beam 3 1577 525.7 346 0.033
WH_thick B8 3655 12185 8.01 0.001
Fp_Dim 1 35 35.3 .23 0.635
d_column 9 113 22.6 0.15 0.978
VEd < 1908 476.9 314 0.034
2-Way Interactions 13 248 19.1 0.13 1.000
Bolt Size*Fp_Dim 7 168 240 0.16 0.991
d_beam*Fp_Dim 3 38 12.5 0.08 0.969
W _thick*Fp_Dim 3 73 244 0.16 0.922
Error 23 3497 152.1
Lack-of-Fit 12 2425 2021 207 0.119
Pure Error 11 1072 97.5
Total 59 756281

The final step within the test phase involved running the 60
tests through the newly developed fully trained ANN model
and carrying out data analysis. To statistically analyse the final
results obtained from the new ANN, a k-fold split cross
validation technique was adopted to assess the performance
and generalisability of the model without requiring excessive
data. The use of 60 runs is justified as it enables a robust 5-
fold cross-validation process, providing a balanced trade-off
between training and validation. With 12 runs per fold, the
ANN is repeatedly trained on a substantial 80% of the data
(48 runs) and validated on the remaining 20% (12 runs),
which it had not seen during the training phase.
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4. Analysis of Results of the ANN

After training the Artificial Neural Network (ANN) through
multiple iterations of backpropagation, an average Mean
Squared Error (MSE) of 0.90 with a variance of 1.03 was
achieved compared to actual reference results, as presented in
Table 3. These results demonstrate that the ANN effectively
captured the non-linear relationships between input variables
and corresponding structural responses, closely aligning with
real-world data. The model’s robustness was further validated
by its reliable and accurate predictions across all 60 Design of
Experiments (DoE) tests, benchmarked against data from the
Smart Engineer software.

The ANN demonstrated a high prediction accuracy for the
primary output, shear stress (kN), with an R? value of 0.9977,
indicating excellent correlation with actual test data. In
addition, the ANN achieved a similar level of accuracy for
secondary outputs, including moment (kN), rotation (°), and
shear strain (y), as shown in figure 4, where high R? values
were consistently observed. These results align with findings
from prior research on similar complex structural engineering
problems (Shbeeb et al., 2024; Zhen et al., 2022), reinforcing
the ANN’s predictive capability for bolted steel connector
applications.

By training and validating on different subsets, the
k-fold split prevented the ANN from overfitting to the
training data. This ensured strong generalisation to
unseen configurations within the defined boundary
conditions of this study, such as varying bolt diameters
and end plate fillet weld thickness. In effect, this had
proven statistical reliability of the ANN in processing unseen
data, providing greater confidence in the usability of the
predictive model for the specific load cases used in this
research investigation.

The limited dataset size may however restrict the model’s
ability to generalise across diverse load cases or unique
connection designs outside the study’s boundary conditions.
To mitigate these limitations, further research can explore
alternative strategies to mitigate overfitting, such as enhanced
cross-validation techniques beyond the mentioned k-fold split,
and to explore the dataset's representativeness to ensure
robustness. Sensitivity studies and collecting larger

datasets can be carried out to validate the model’s reliability
across a broader range of boundary conditions and
configurations of connection designs.

The reliance on limited data underscores the need for
supplementary validation, such as Finite Element Modelling
(FEM), for novel cases, ensuring the ANN’s reliability in real-
world applications.
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Table 3: MSE & Variance Results of ANN Predicted Results

ACTUAL ANN Predicted Mean Square
Smart Engineer Results 8th Iteration Error
VEd |d_column|w_column |d_beam |w_beam |Fp_thick |Fp_Dim |WF_thick | o bolt Connection Capacity | Connection Capacity (MSE)
KN mm mm mm mm mm mm mm mm (kN) (kN)
Test No.
1 50 152 152 152 152 -+ 200 6 12 103.59 104.11 0.27
2| 100 152 152 152 152 16 250 20 12 103.59 104.11 0.27
3| 150 152 152 152 152 4 200 6 16 192.92 193.88 0.93
4| 200 152 152 152 152 16 250 20 16 192.92 193.88 0.93
5| 250 152 152 152 152 4 200 6 20 180.22 181.12 0.81
6| 300 152 152 152 152 20 250 16 20 227.81 228.95 1.30
60| 400 305 305 305 305 20 250 16 24 433.77 434.64 0.75
MSE 0.9
Variance 1.03
450 0.006
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Figure 4: ANN predicted response in the testing and validation for key responses
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4.1 Response Surface Model

It is useful to identify the inputs that had the largest
influence upon the final shear stress (kN) output.
A regression analysis of the key inputs had revealed the
weld fillet thickness and bolt diameter inputs had the
largest influence on the resultant shear stress with the
largest R? value of 1.0 and 0.99 respectively.
A Response Surface Model (RSM) was employed to model
the performance relationship between weld fillet thickness of
the end plate and bolt diameter, enabling the optimisation of
these design parameters to achieve optimal outcomes
in terms of structural performance, weight efficiency, cost,
and embodied carbon (CO:), shown in figure 5.

Surface Plot of Weld fillet thickness (mm) vs Bolt Diameter (mm) for Shear Stress Resistance (kN)

20 ’
15
Weld_f (mm)
10 25
; 2
. 15
100 %
Zog

Bolt Diameter (mm)

20
200
Shear Stress Resistance (kN)

Regression Equation in Uncoded Units
Shear Stress Resistance (kN) = -82.8 + 11.36 Bolt Diameter(mm)
+ 8.08 Weld Fillet Thickness (mm)
- 0.496 Bolt Diameter(mm)*Weld Fillet Thickness (mm)

Fig.5 Response Surface Model (Weld Fillet thickness & Bolt
Diameter)

5. Concept Design Selection using PROVEN tool

Previous research carried out by the author (Georgiou. A,
2015) developed a mathematical tool ‘PROVEN’ (Product
Optimisation Value Engineering) as part of a completed PhD,
to aid the concept design selection process using an attribute
driven approach. The findings of the PhD were presented
at several global sustainability conferences with
published work featuring in two published journals. The
PROVEN tool was tried and tested within the Automotive and
Construction industries for the identification and selection of
an optimised concept design that proved to be very useful.

The PROVEN approach complements the application of the
new ANN, as the predicted outputs for bolted steel connector
designs were assessed against other alternative designs to
determine the most optimal design in meeting key
performance attributes. This involved a prioritisation of key
attributes to include structural integrity, sustainability, cost and
versatility for the selection of steel connections, considered as
part of this research study. The following theoretical steps of
the PROVEN framework were applied to determine an optimal
design for a bolted steel connector.
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5.1 Value Equation

The relative value of a product as a result of a single
attribute at level g located between g, (critical) and g,
(ideal) is given by Cook’s adapted value equation 13

_ [(gc-gD*-(g-g1)*
v(g) = (Qc—gl)z—(go—gl)z] 14

(13)

where:

e v(g) is the customer perceived value of a product attribute
with performance g;

e g;and g, are the ideal and critical value of the S-model
curve for a performance measure;

® g, is the performance of the baseline vehicle;

e y is a weighting factor representing the importance of the
product attribute to the customer.

As attributes tend to have different units of measure, equation

13 normalises all values to 1.0 allowing for an easier

comparison to be made particularly with a rather complex

system. ‘The ideal point ‘g;’ of the value curve is defined as

the performance level at which the derivative of the value

curve reaches zero. This means that any further improvement

in this performance measure does not improve the customer-

perceived value of a product attribute. The critical point ‘g’

is defined as the performance level at which the value curve

crosses the performance axis, meaning that at this point or

beyond the performance of the product is so poor that the

customer perceives the product to have absolutely no value’

shown in figure 6 (Cook, 1997).

= ideal

baselme

Figure 6: Relative Value Attribute (Cook, 1997)
5.2 Relative Value Index Model (RVI)

The Relative Value Index (RVI) is a mathematical model

based on the Taguchi’s loss function, adapted from statistical
process control methods. The RVI is more meaningful as
actual data is derived from each of the attribute performance
parameters to generate a value index that can be used to
compare between various attributes where units of measure
maybe different (Downen et.al., 2005).
The total value of a product taking into account as many
attributes as required can be calculated using a Relative Value
Index (RVI) based on Taguchi’s adapted loss function,
equation 14.
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RVI; = V(Hil)]""”(giz)Y"':(HB)Y"'“‘V(gin)]’

(14)

The exponential weighting factor ‘y ’ reflects the relative
importance of each attribute to the overall product RVI of the
attributes g; and n represents the number of concept designs
to be evaluated. The multiplicative relationship between the
attributes means that a specific product attribute depends not
only upon its own level but also on the levels of the other
attributes (Downen et.al., 2005). The RVI is useful for the
assessment of concept designs as it uses a data-driven
approach.

5.6 ANN and PROVEN Integration

The new ANN developed as part of this research study
complements the PROVEN methodology by providing rapid,
accurate shear stress (kN) predictions of bolted connections,
which PROVEN uses to evaluate and rank design options
using a multi-attribute performance driven process, including
cost and embodied carbon emissions.

This synergy enables the selection of an optimised bolted steel
connection design that minimises embodied carbon, through
reduced material weight and cost while maintaining structural
integrity under load conditions. The ANN calculates the non-
linear predictive modelling, while PROVEN applies a data-
driven, multi-attribute framework for holistic optimisation,
aligning with sustainability goals, UN SDGs 9 and 11.

The workflow diagram shown in figure 7 displays the
integration of the ANN output (shear stress kN) with
PROVEN.

ANN Output
Predicted Shear Stress (kN) of bolted
connection achieved through forward-pass
and back-propagation procedure

A 4

PROVEN System

«  Translation of key performance attributes into a
normalised metric (RVI) to compare various
concepts designs using Cook's value equations.

«  Multi-attribute evaluations made for each concept
design normalised to a 0-1 metric

«  Functional and cost/CO2 assessment
confirmation for each concept design being
considered.

»  Objective assessment performed allowing for key
trade-off design decisions to be made

»  Rank design options in accordance with meeting
design objectives.

Results Assessment
Structural Engineer to Sanity check
results to ensure compliance with EC3

A 4
Optimised Bolted Connection Defined for CO2
Selected Bolted Steel Connection offering maximum
value meeting key attributes targets optimised for
CO2 and cost

Fig. 7: ANN-PROVEN Integration
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5.3 Design Selection using PROVEN

The application of PROVEN was used to assist in the
selection of five competing bolted steel connector designs, in
identifying the most optimal design, shown in table 6.

Using Cook’s adapted value Equation 13, and the adapted RVI
Equation 14; by substituting in the performance attribute
values for each concept design, provides the overall
assessment for each design, normalised to a value of 1.0.

The first step of PROVEN was to define the range of
each  attribute bound relevant for bolted steel
connections in terms of the critical value, a target value
and an ideal value. The following attribute bound
settings were defined through the DoE test runs
performed, shown in table 4.

Table 4; Attribute Bounds defined for Bolted Steel
connections derived from DoE’s

Attribute Bounds
Attribute (g) Critical_c | Target 0 | Ideal_i | Weighted (y)
Shear Stress (kN) 400 225 175 0.9949
Shear Strain (g) 0.005 0.003 0.0012 0.9917
Moment (kNm) 215 100 80 0.9343
Rotation (q) 0.038 0.0025 0.001 0.9456
Weight (kg) 4 1.8 1.2 1
Cost (£) 9 6 5 1
CO2 (kgCO2e/kg) 4 2 1 1

The weighted values (y) featured in table 4 are derived
from regression analysis, apart from the weight, cost
and CO2 attributes which have all been set to a
maximum of 1, as these attributes are inter-related, as
lowering the overall weight would reduce the cost and
lower embodied carbon CO2 emissions (IStructE, 2025).
As an example, regression analysis for shear

strain (y) has been carried out as shown in figure 8.
It must be noted; the bolt size and number of bolts
were chosen as prime parameters with the largest
influence on the shear stress of a steel connector.
Other factors such as end plate thickness and the size
of the plate all play a role and fixed assumptions have
been made as part of the regression analysis which
includes a total of four bolts (2 rows of two bolts),
end plate thickness of 8mm and plate size of 200mm

0.004
Shear Strain g = 0.0003 * Bolt Size (mm) - 0.0021

0.0035 R2=0.0017
bd .
_. 0.003
=
£ 0.0025
@
=
& 0.002 e
3 0.0015
K= -
0.001 @
0.0005
0
12 14 16 18 20

Bolt Size (mm)

Fig. 8; Regression Analysis for Shear Strain (y) vs.
Bolt size (mm)
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5.4 Case Study using PROVEN

As a demonstrative case, Concept Design 1 (table 6) will
be evaluated against the moment capacity (kNm) using the
PROVEN methodology. The same procedure is subsequently
applied to all other attributes and concept designs.

Step 1: Using Eq.13, and substituting the Moment (kNm)
attribute bounds g, = 215, g; = 80, go = 100 from
table 4 and using the achieved Moment (kNm) performance
value from table 5 for Concept design 1 (g = 83.6 kNm),
(y = 0.9343) gives;

(215-80)%—(83.6—80)?
oo aoeaoyz | 0-9343 = 0.95 (RVD

The calculated 0.95 relative value index corresponds to the
RVI as shown in table 6 circled in red. As Cook’s RVI
equation normalises all calculated values to 1.0, in the case of
the Moment attribute for Concept design 1, it is 95% efficient
in meeting the moment performance target.

Step 2: To assess all attributes for all designs with a
normalised value to 1.0, the Relative Value Index (RVI)
equation 14, is used to calculate the overall rating of each
design.

The RVI equation effectively adds all individual attribute
relative value index’s and the resultant RVI is divided by the
total number of attributes assessed. For concept design 1, the
RVI equation is as follows;

0.94+1.28+0.95+0.87+0.86+0.34+-0.16 / 7=0.73

The same procedure is then carried out assessing each concept
design against the performance attributes. The results as
indicated in table 6, revealed concept design 2 scored the
highest total RVI for all assessed attributes scoring 0.98,
mainly attributed to achieving the lightest weight design, most
cost effective and best in class for CO2 sustainability. Concept
design 5 scored the lowest RVI of 0.5, making this design the
worse performing in meeting the overall required attribute
targets.

Table 5: Inputs & Outputs of five concept designs of bolted steel connections

Input Variables Outputs
Shear | Shear . .
M t| Rotati Weight|Cost CO2
Concept | VEd [d_column|w_column [d_beam |w_beam|Fp_thick |Fp_Dim | Wf_thick|2 bolt | Stress| Strain e (ko e .
Design | (kN) [ (mm) | (mm) | (mm) | (mm) [ (mm) | (mm) | (mm) |(mm)| (kN) | (y) | (kNm) | (°) | (kg) | (§) |(kgCO2elkg)
1 100 152 152 152 152 16 250 20 12 |103.59(0.0013| 83.6 [0.0021 2.37 | 8.30 413
2 150 152 152 203 203 4 200 6 16 |192.92|0.0024| 91.2 |0.0024 1.80 | 6.30 3.13
3 200 203 203 305 305 6 250 6 16 |211.00]0.0026( 132.0 |0.0015 221 | 7.75 3.85
4 250 305 305 254 254 20 200 16 20 (301.06/0.0037| 184.3 (0.0029 2.04 | 713 3.55
5 350 305 305 305 305 9 200 16 24 [392.10/0.0049| 205.9 [0.0032 1.98 | 6.94 3.45

doi: 10.1006/efs. xxxX.XXXX
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Table 6: Bolted Steel Connection Design Appraisal using PROVEN

Concept Design 1

Concept Design 2

Concept Design 3 Concept Design 4 Concept Design 5

Design Achieved Achieved Achieved
Design Criteria | Criteria | Weighting Attribute Achieved Attribute Attribute Achieved Attribute Attribute
Targets Performance RVI Performance RVI | Performance | RVI Performance RVI | Performance [ RVI
Shear Stress (kN) 225 0.9949 103.59 0.94 192 1.0 211 1.0 301 0.7 392 0.1
Shear Strain (7) 0.003 0.9917 0.00128 1.28 0.0024 1.2 0.0026 11 0.003 0.7 0.0048 0.1
Moment (kNm) 100 0.9917 83.6 @ 91.2 1.0 132 0.8 184 0.4 205 0.1
Rotation (8) 0.0025 0.8661 0.00211 087 0.0023 0.9 0.0015 0.9 0.0029 0.9 0.003 0.9
Weight (kg) 1.8 1 2.37 0.86 1.79 1.0 2.21 0.9 2.03 1.0 1.98 1.0
Cost (£) 6 1 8.3 0.34 6.29 1.0 7.74 0.6 713 0.8 6.93 0.8
CO2 (kgCO2e/kg) 2 1 4.12 -0.16 3.13 0.9 3.85 0.2 3.54 0.5 3.44 0.6
Total Relative Value Index (RVI) 0.73 0.78 0.70
Ranking 3 1 2 4 5
5.5 Design Optimisation
To identify the concept design for achieving the This creates a substantially optimised product offering to the

highest performance targets in terms of; shear stress,
shear-strain,moment and rotation, new attribute bounds
are defined shown in table 7. This scenario may suit a
specific application where extreme boundary conditions
require high shear stress resistance, leaving minimal
opportunity to optimise weight,cost, and CO. emissions.

Table 7: Updated Attribute Bounds for Maximum
Steel Connector Performance

Attribute Bounds
Attribute (g) Critical_c | Target_0 | Ideal_i |Weighted (y)|
Shear Stress (kN) 400 300 250 0.9949
Shear Strain (g) 0.005 0.003 0.0012 0.9917
Moment (kNm) 40 130 140 0.9343
Rotation (q) 0.03 0.0021 0.001 0.9456
Weight (kg) 4 2 0.5 1
Cost (£) 9 7 4 1
CO2 (kgCO2e/kg) 4 3.8 1 1

Steps 1 & 2 of the PROVEN methodology were run
again with results presented in table 8. Concept

design 3 scored the highest total RVI of 0.77 and
concept design 2 was the next favourable design
alternative with an RVI of 0.74. As the aim was to
identify a design to deliver high structural performance
attribute values, this did come at an increase in cost,
weight and CO2 even though these values are lower for
concept design 2. This is due to requiring more
material such as larger bolt diameters, thicker weld
fillet and end plate thickness that all add to the weight,
cost and CO2 attributes.(Regan, C. 2018; Sabatka et al.
2015; Stark, J. 2023).

The results presented as part of the PROVEN
application in the selection of steel connection design
proved to be very useful in identifying the most
optimal design using an attribute driven approach.

doi: 10.1006/efs. xxxX.XXXX

market, minimising cost and component weight with
associated sustainability advantages in lowering embodied
carbon emissions.
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Table 8; Bolted Steel Connection using PROVEN for Shear Stress, Shear Strain, Moment and Rotation Prioritisation

Concept Design 1

Concept Design 2

Concept Design 3

Concept Design 4

Concept Design 5

Design Achieved Achieved Achieved
Design Criteria Criteria | Weighting Attribute Achieved Attribute Attribute Achieved Attribute Attribute
Targets Performance RVI Performance RVI | Performance | RVI Performance RVI | Performance | RVI
Shear Stress (kN) 300 0.9949 103.59 0.94 192 1.0 21 1.0 301 0.7 392 0.1
Shear Strain () 0.003 0.9917 0.00128 1.28 0.0024 1.2 0.0026 | 0.003 0.7 0.0048 0.1
Moment (KNm) 130 0.9917 83.6 0.95 91.2 1.0 132 0.8 184 0.4 205 0.1
Rotation (6) 0.0021 0.8661 0.00211 0.87 0.0023 0.9 0.0015 0.9 0.0029 0.9 0.003 0.9
Weight (kg) 2 1 237 0.86 1.79 1.0 221 0.9 2.03 1.0 1.98 1.0
Cost (£) 7 1 8.3 0.34 6.29 1.0 7.74 0.6 13 0.8 6.93 0.8
CO2 (kgCO2e/kg) 3.8 1 412 -0.16 3.13 0.9 3.85 0.2 3.54 0.5 3.44 0.6
Total Relative Value Index (RVI) 0.61 0.74 0.69
Ranking 4 2 1 D
6. Comparative Case Study: ANN-PROVEN vs.

Component Modelling for Bolted Steel Connection Design

To demonstrate the sustainability advantages for carbon
reductions achieved with the ANN-PROVEN approach vs.
traditional Component Modelling (CM), a comparative case
study has been carried out for a bolted end-plate beam-column
connection under shear load.

The load condition entailed a beam-column bolted connection
under a 200 kN shear force within a multi-storey office
building. The load scenario considers steel beams and
columns of identical dimensions, each connection secured
with four bolts. The results of the ANN-PROVEN
methodology vs. CM can be seen in table 9.

The analysis indicates that the CM method resulted in a bolt
diameter of 20mm paired with a fillet weld of 16mm, whereas
the ANN-PROVEN method had chosen a thicker weld of
20mm and a reduced 16mm bolt diameter. This adjustment
accounted for a net reduction in embodied carbon and weight
of approximately 15% and a 16% cost reduction.

For a building featuring 200 bolted steel connections, with
four bolts per connection, this translates to a cumulative net
weight reduction of 47.2 kg and a total embodied net carbon
saving of 87.32 kgCO:e/kg without compromising structural
integrity and safety.

The ANN's rapid processing capability enables the assessment
of thousands of design iterations, while PROVEN's attribute
driven assessment method identifies trade-offs with slightly
thicker welds in exchange for smaller diameter bolts to meet
the structural integrity requirements. Alternatively, re-
executing the CM to explore these trade-offs is feasible but
would be highly time-intensive to identify an acceptable
optimisation.

doi: 10.1006/efs. xxxX.XXXX
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Table 9; Quantitative Comparison (Component Modelling vs. ANN-PROVEN)

Input Variables Attributes Efficiency
Bolt Fillet | Fin-Plate | Fin-Plate Steel *Embodied **Cost
Size Weld | Thickness | Dimension | Weight | Carbon (£)
(mm) (mm) | (mm) (mm) (kg) (kgCO2e/kg)
Component 20 16 16 0.40 0.74 0.48
Modelling
ANN-PROVEN 16 20 16 0.34 0.63 0.40
Method
Savings/Reduction 15% 15% 16%

* IStructE (2025) provides guidance on embodied carbon for mild steel of; 1.77 kgCO/kg
** Jozepa (2025) cites a structural steel cost of £1,200 per ton for UK

6. Conclusions

The integration of the ANN with the PROVEN
methodology establishes a systematic, evidence-based
approach to optimise bolted steel connection designs. This
framework enhances performance, reduces material
consumption, and promotes sustainability through efficient
and data-driven design decisions.

The ANN significantly shortens processing time compared
with conventional methods, where structural engineers
manually adjust parameters in FEM or component-based
models, a process that is both time-intensive and impractical.
The ANN output feeds directly into the PROVEN
methodology to evaluate and rank design options using a
multi-attribute performance driven process, that considers
cost and embodied carbon emissions, enabling the selection
of lightweight, cost-effective, and structurally sound
connector configurations.

The ANN’s deep learning phase successfully mapped non-
linear input relationships, reducing error margins to an
acceptable level. Statistical analysis confirmed the ANN’s
accuracy against component modelling software, with an
MSE of 0.9 and variance of 1.03, demonstrating its ability to
learn real-world non-linear patterns. The PROVEN approach
prioritised attributes through regression analysis, aiding
sustainable design optimisation and selection, though a
limitation is the ANN’s challenge with unique load cases,
requiring FEM and physical testing for validation.

The ANN delivered consistent and precise outcomes across
60 DoE tests, achieving a robust R? of 0.9977 for shear stress
(kN) predictions, within the defined boundary conditions of
the specific load case of this study. Overfitting risks were
mitigated through k-fold cross-validation, while the DoE
framework and stratified sampling ensured statistical
robustness and representativeness. However, the small dataset
size could limit the model’s ability to generalise across diverse
load cases outside the boundary conditions of the study or
unique connection designs. Further research can explore
collecting larger datasets via experiments, sensitivity analysis
and enhanced k-fold validation to evaluate input impact and
improve model robustness. Expanding the dataset through
these methods will strengthen the ANN’s generalisability
beyond the defined boundary conditions and ensure greater
reliability across diverse structural applications.

In conclusion, the combined ANN and PROVEN approach

doi: 10.1006/efs. xxxX.XXXX

offer a reliable method to optimise bolted steel connector
designs during the conceptual phase, minimising processing
time. This research offers a substantial contribution to the
field, with practical implications for design decisions, as
evidenced by the experimental testing phase.

Future research could expand to hybrid connections (e.g.,
timber-steel or concrete-steel) and automate the process with
a Python script and Gradio interface for broader applicability
across varied boundary conditions.
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