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1. Introduction  

Steel connections play a vital role within the design of a 

building to ensure structural integrity is achieved within a 

steel framed structure. Existing analytical methods such as 

Finite Element Models (FEMs) and component modelling  

techniques are time consuming and can be costly to carry 

out. The use of Artificial Neural Networks (ANNs) provides 

a time efficient and cost-effective alternative process, 

capable of modelling non-linear prediction behaviour 

achieving a high level of accuracy. Learning from verified 

experimental data, ANNs have been applied to various 

structural elements in the construction industry 

demonstrating high predictive accuracy as evidenced in prior 

research studies. 

This research discusses the development of a new evaluation 

tool to accurately prescribe suitable steel connection designs 

for a given load case using a newly defined ANN prediction 

model. This study specifically investigates the performance of 

bolted steel connections transferring shear load (kN) from a 

supported beam to a supporting column (as shown in figure 1). 

The scope encompasses boundary conditions representing shear 

loads of 50–400 kN and beam/column dimensions of 152–305 

mm, with variations of connection parameters including flange 

plate thickness, plate size, weld thickness, and bolt diameter. 

These parameters establish the range for evaluating connection 

performance and training the ANN model within these limits. 
The model is to also allow for faster processing time and 

ease of use to serve the structural engineer in practice, 

minimising the margin of error in the selection of steel 

connections. To complement the design selection process of 

steel connections, a prioritisation of key attributes to include 

structural integrity, sustainability, cost and versatility was 

also considered serving as primary inputs to an evaluation 
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Abstract.    
This paper introduces a novel Artificial Neural Network (ANN) model for predicting the structural behaviour of moment-

resisting bolted steel connections, with an emphasis on sustainability aligned with UN Sustainable Development Goals 9 

(Industry, Innovation, and Infrastructure) and 11 (Sustainable Cities and Communities). Traditional methods like Finite  

Element Modelling (FEM) and Component Modelling (CM) are resource-intensive, prompting the development of a new ANN 

as an efficient alternative for forecasting shear stress resistance under varying load conditions and design of connection. 

The ANN features a feed-forward architecture with nine normalised input variables (e.g., bolt diameter, weld fillet thickness, 

beam depth), a single hidden layer of five neurons, and a sigmoid activation function to capture non-linear relationships 

inherent in bolted steel connections. The ANN’s weights and biases were initialised using the PyTorch Xavier method to launch 

the learning process, with updates to each neuron within a hidden layer via back-propagation, driven by Mean Square Error 

(MSE), gradient descent, and the chain rule, refining the model iteratively until convergence and accurate predictions on unseen 

data were achieved. 

An ANOVA sensitivity analysis identified bolt size and weld thickness as key significant factors (P < 0.05), and k-fold cross-

validation confirmed model generalisability without overfitting within the established boundary conditions of this study. 

Results demonstrate an R² of 0.9977 for shear stress predictions, with an average MSE of 0.9 and variance of 1.03, aligning 

with benchmarks from prior structural engineering research.  

Complementing the ANN, the Product Optimisation Value Engineering (PROVEN) framework applies an attribute-driven 

methodology, using relative value indices to evaluate designs against criteria like structural integrity, weight, cost, and 

embodied carbon. Case studies of five connector concepts demonstrated PROVEN's ability to select optimal designs, balancing 

performance with sustainability. 

Overall, the integrated ANN-PROVEN approach vs. traditional methods reduces design time, minimises material use, and 

lowers carbon emissions, advancing efficient and eco-friendly structural engineering practices. 
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trade-off tool to achieve an optimised connection design.   

Prioritising of attributes using an optioneering approach, 

Product Optimisation Value Engineering (PROVEN) refers 

to previous published work conducted as part of a completed 

PhD program by the principal author (Georgiou et.al 2015). 

The key objectives to advance sustainable structural 

engineering design were; 

• A high-accuracy Artificial Neural Network (ANN) model 

to predict shear stress resistance in bolted steel 

connections, accounting for complex non-linear 

interactions; 

• Reduction in reliance on extensive physical testing, 

thereby lowering material use, cost, and reducing 

negatively associated environmental impact; 

• Minimising computational time for evaluating steel 

connector configurations, enabling faster and resource-

efficient design processes; 

• To support a more reliable and sustainable connection 

selection methodology that can integrate embodied carbon, 

cost, and structural performance into early-stage design 

decisions. 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 1: Bolted end-plate beam-column Steel Connection 

1.1 Artificial Neural Network Predictive Model 
 

Artificial Neural networks are essentially a Machine 

Learning method inspired by the human brain comprising of 

a network of neurons forming the central control system 

(Haykin, S., 2009). In a similar way, ANNs comprise of 

interconnected neurons with a number of numerical inputs, 

multiplied by the weights on their connections with a bias 

added and are processed. If the result passes a certain 

threshold, the neuron is activated resulting in a numerical 

output. The neural network learns by using a continuous loop 

of forward propagation to generate an output through the 

network and backward propagation to adjust the weights and 

biases of the inputs to minimise the margin of error. This 

learning process is repeated until the desired loss function is 

reached, meaning an acceptable predicted ANN result has 

been achieved (Almeida et.al, 2020). An ANN was defined to 

determine the non-linear relationship between the input and 

output parameters for the behaviour of bolted steel 

connections. The research gap identified is that while prior 

ANN-based studies have demonstrated high predictive 

accuracy for various structural elements in construction (e.g., 

flexural strength in steel fibre-reinforced concrete [Dong 

Zhen et al., 2022], bond strength in fibre-reinforced polymer 

bars [Nadim I. Shbeeb et al., 2024], and hybrid FEM-ANN 

analysis of adhesive anchors [Almeida & Guner, 2020]), they 

do not specifically address the non-linear prediction of shear 

stress resistance in moment-resisting bolted steel connections.  

Existing ANNs lack integration with attribute-driven 

approaches such as PROVEN, a value engineering approach 

for optimised design selection, faster processing, reduced 

error margins, and sustainability considerations such as 

minimised material use and embodied carbon. This gap 

necessitated the development of a new feed-forward ANN 

with back-propagation coupled with PROVEN.  

  

2. Development of the New ANN 
 

2.1 Feed-Forward ANN Architecture with Back-
Propagation Learning Algorithm  

 
The feed-forward ANN architecture comprises of nine 

inputs, a single hidden layer containing five neurons whereby 

a transfer function and a sigmoid activation function are 

applied to predict the resultant shear stress (kN) within a 

single output, as shown in figure 2. The back-propagation 

involved training of the network whereby the gradient of the 

error was calculated and propagated back through the network, 

updating weights and biases for each neuron (Goodfellow 

et.al, 2016). This architecture was selected over alternatives 

for its accuracy, computational efficiency, and practicality in 

modelling complex structural behaviours, to achieve 

satisfactory structural integrity aligned with Eurocode 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2: Schematic of ANN single-hidden layer feed-forward   

     network   

The nine inputs were identified via regression analysis and 
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validated with 60 connection variations from a Design of 

Experiments (DoE). The input factors such as (e.g., applied 

force, weld fillet thickness, bolt diameter) effectively capture 

non-linear interactions, avoiding redundancy or omission 

seen in structures with fewer or excessive inputs. These 

factors are shown in Table 1 (Green Book, 2023; The Steel 

Construction Institute, 2013). The single hidden layer with 

five neurons was chosen to balance computational efficiency 

and predictive accuracy. Configurations with fewer neurons 

(e.g., three) led to underfitting, failing to capture intricate 

patterns, while more neurons (e.g., ten) caused overfitting.  

The chosen five neurons ensured effective convergence   

during back-propagation with Mean Squared Error (MSE) 

minimisation, maintaining an optimal balance. The single 

output, shear stress (kN), supports supervised learning from 

validated data, avoiding the complexity of multi-output 

models and delivers accurate predictions tailored to analysing 

bolted steel connection behaviour within the defined 

boundary conditions. 

 

Table 1: Input Factors considered for ANN 

 

 

 

 

 

 

 

 

 

 

It is essential to normalise the input factors into a single range 

between 0 and 1 in order for the ANN to r e d u c e  t h e        

sensitivity of the network and to improve the training  

and accuracy, using Eq.1 (Han et.al, 2011). 
(𝑥 −𝑚𝑖𝑛𝑣𝑎𝑙)

(𝑚𝑎𝑥𝑣𝑎𝑙−𝑚𝑖𝑛𝑣𝑎𝑙)
          (1) 

where; 𝑥 = input value 

The constituents of the ANN network comprised of a transfer 

function, a sigmoid activation function, learning rate and 

prediction error. To initiate the weights and biases for all nine 

inputs across five neurons within the hidden layer, a PyTorch 

Xavier Initialisation is used, Eq.2 (Pater et al. 2023; Glorot 

et.al, 2010; Paszke et al, 2019). 

 

W ~ U (− √
6

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
, √

6

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
 )         (2) 

 

where; nin = number of inputs, nout = number of neurons  

gives;  W ~ U (-0.654, +0.654) 

 

Figure 3 shows a visual heat map of the distribution of

weight values across the range of -0.654 to +0.654 for 

both the inputs and neurons. This visualisation helps   

identify how strongly  each  input  contributes to the  

network’s predictions,  highlights  any  dominant  or  

under utilised connections, and provides insight into the 

overall balance and sensitivity of  the  model  during  

training. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Xavier Initialised Heat Map 

The calculated input to each neuron is performed using Eq.3 

(Debney, P, 2020) before a sigmoid activation function is 

applied, Eq.4 (Goodfellow et.al, 2016). 

 

∑ 𝑊𝑖 ∗ 𝑋𝑖

𝑚

𝑖=1

+ 𝑏                                                                          (3) 

where, wi = weighted value of input, xi = input value, b = bias 

 
𝟏

𝟏+ 𝒆−𝒙                (4) 

 

The primary purpose of the sigmoid activation function is to 

introduce non-linearity into the network to effectively map 

input values to a predicted output. The sigmoid function was 

chosen as it generates binary outputs as either zero or one, 

suitable for binary classification problems. As the input values 

are normalised to a value between (0 – 1) the sigmoid function 

lends itself well as a compatible activation function. The 

sigmoid function also has a smooth and continuously 

differentiable nature across its entire domain, as well as its 

demonstrated effectiveness in prior studies (Haykin, S, 2009). 

The final generated output of the ANN will also be between 

(0 – 1) and the translated shear stress (kN) is obtained using 

equation 5 (Haykin, S, 2009). 

 

y * (tmax – tmin) + tmin                    (5) 

The predicted output of the ANN is treated with the mean 

squared error (MSE) to determine the error of margin between 

the predicted results vs. actual validated result, using Eq.6 

(Haykin, S, 2009). 

1

𝑛
∑(𝑦𝑖 − 𝑦̂)2

𝑛

𝑖=0

                                                                           (6) 

where;  𝑦𝑖  = actual value, 𝑦̂ = predicted value, n = number 

of data points. 
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2.2 Back-Propagation 
 

A back-propagation is then performed through the 

network to update the weights and biases of each input for 

every associated neuron within the hidden layer to minimise 

the MSE through a number of iterations. This is performed 

using a gradient of loss Eq.7, derivative of sigmoid function 

Eq.8 and chain rule Eq.9 (Haykin, S, 2009). 
𝒅𝑳

𝒅𝑦̂
 = 𝑦̂ − 𝑦           (7) 

 

'(z) = 𝑦̂(1 − 𝑦̂)           (8) 

 

 = 
𝒅𝑳

𝒅𝑧
 = 

𝒅𝑳

𝒅𝑦̂
 x  '(z)          (9) 

The weights are updated using Eq.10, Eq.11 and biases using 

Eq.12 (Haykin, S, 2009). 

 
 𝝏𝑳

𝝏𝑤1
 =  x 

1
                (10) 

 

𝑊1
𝑛𝑒𝑤 =  𝑊1  – n x 

 𝝏𝑳

𝝏𝑤1
         (11) 

 

𝑏𝑛𝑒𝑤 =  𝑏1 – n x 
 𝝏𝑳

𝝏𝑏
         (12) 

  
3. Experimental Design Methodology 

The  application of  Design of Experiments (DoEs) 

in this study was critical  for  the  development of  a 

robust and representative  dataset  used  as part of the 

training of the new ANN model  to account  for  the 

interactions of  all  input design variables to learn the 

non-linear  relationships  of  bolted  steel  connectors. 

The DoE framework supports both statistical validation  

and  the iterative process  required  by the  ANN  to 

generate accurate results (Montgomery, D.C., 2006). 

In this study, a stratified sampling technique and custom 

fractional factorial was used as part of a DoE approach 

to support the scope of this research. A total of 60 tests were 

defined to account for variations in input parameters within 

the defined boundary conditions of this study (Ahmed, S, 

2024). This approach allows for the main effects of the range 

and combination of the input interactions to be analysed and 

supports the development and prove out of the non-linear 

ANN predictive model. The defined test schedule specified, 

provides a good grounding for the statistical analysis of results 

and machine learning-based modelling.  

In contrast, a full factorial design would have produced in 

excess of 8000 tests which is not practical and unnecessary 

and so the custom fractional factorial design was chosen in 

order to reduce the number of tests to 60 runs while 

maintaining the key interactions between inputs to achieve 

meaningful results. This reduction was made after a 

preliminary review of the design matrix had revealed some 

test combinations were too similar with each other yielding 

repetitive results with minimal contribution to the ANN 

training. The strategic approach used in the reduction of tests 

was deemed sufficient and at the same time optimised the 

available time and resources. The custom factorial design 

feature was used within Minitab statistical software in order 

to create a test schedule with a total of 60 runs.  

The defined DoE schedule was run using a validated 

component software programme ‘Smart Engineer’ to serve as 

the target response data for shear stress (kN), shear strain (g), 

moment (kNm) and rotation (˚). The  Smart  Engineer    

software uses a component model method referencing   

the EC3 procedure.  

Furthermore, a sensitivity analysis using Analysis of Variance 

(ANOVA) within Minitab software was carried out on the 

actual data obtained from the Smart Engineer software of all 

60 tests. The ANOVA had shown that the regression model 

created to evaluate shear stress resistance was statistically 

significant, with a model P-value of 0.000. The main factors 

that were statistically significant with a p value < 0.05 were; 

bolt size, weld fillet thickness, beam depth and applied load 

and the combination of these factors explains the variation in 

shear stress resistance, shown in table 2. The lack-of-fit test 

with a P value of 0.119 indicates no significant deviation in 

the data, and so the number of tests was appropriate to capture 

the complexity of the system (Choi et.al, 2024). 

Therefore, the 60 DoE tests are justified as they provide the 

required resolution to differentiate significant input factor 

effects from insignificant ones and to ensure reliable 

interpretation of interaction effects. 

 

Table 2: ANOVA Sensitivity Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final step within the test phase involved running the 60 

tests through the newly developed fully trained ANN model 

and carrying out data analysis. To statistically analyse the final 

results obtained from the new ANN, a k-fold split cross 

validation technique was adopted to assess the performance 

and generalisability of the model without requiring excessive 

data. The use of 60 runs is justified as it enables a robust 5-

fold cross-validation process, providing a balanced trade-off 

between training and validation. With 12 runs per fold, the 

ANN is repeatedly trained on a substantial 80% of the data 

(48 runs) and validated on the remaining 20% (12 runs), 

which it had not seen during the training phase.  
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4. Analysis of Results of the ANN 
 

After training the Artificial Neural Network (ANN) through 

multiple iterations of backpropagation, an average Mean 

Squared Error (MSE) of 0.90 with a variance of 1.03 was 

achieved compared to actual reference results, as presented in 

Table 3. These results demonstrate that the ANN effectively 

captured the non-linear relationships between input variables 

and corresponding structural responses, closely aligning with 

real-world data. The model’s robustness was further validated 

by its reliable and accurate predictions across all 60 Design of 

Experiments (DoE) tests, benchmarked against data from the 

Smart Engineer software. 

The ANN demonstrated a high prediction accuracy for the 

primary output, shear stress (kN), with an R² value of 0.9977, 

indicating excellent correlation with actual test data. In 

addition, the ANN achieved a similar level of accuracy for 

secondary outputs, including moment (kN), rotation (°), and 

shear strain (γ), as shown in figure 4, where high R² values 

were consistently observed. These results align with findings 

from prior research on similar complex structural engineering 

problems (Shbeeb et al., 2024; Zhen et al., 2022), reinforcing 

the ANN’s predictive capability for bolted steel connector 

applications. 

By training and validating on different subsets, the  

k-fold split prevented the ANN from overfitting to the  

training data. This ensured strong generalisation to  

unseen configurations within the defined boundary     

conditions of this study, such as varying bolt diameters 

and end plate fillet weld thickness. In effect, this had 

proven statistical reliability of the ANN in processing unseen 

data, providing greater confidence in the usability of the 

predictive model for the specific load cases used in this 

research investigation.  

The limited dataset size may however restrict the model’s 

ability to generalise across diverse load cases or unique 

connection designs outside the study’s boundary conditions.  

To mitigate these limitations, further research can explore  

alternative strategies to mitigate overfitting, such as enhanced 

cross-validation techniques beyond the mentioned k-fold split, 

and to explore the dataset's representativeness to ensure 

robustness. Sensitivity studies and collecting larger  

datasets can be carried out to validate the model’s reliability  

across a broader range of boundary conditions and  

configurations of connection designs.    

The reliance on limited data underscores the need for 

supplementary validation, such as Finite Element Modelling 

(FEM), for novel cases, ensuring the ANN’s reliability in real-

world applications. 
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Figure 4: ANN predicted response in the testing and validation for key responses 

outputs 

 

 

 

Table 3: MSE & Variance Results of ANN Predicted Results
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4.1 Response Surface Model 
 

It is useful to identify the inputs that had the largest

influence upon the final shear stress (kN) output.  

A regression analysis of the key inputs had revealed the  

weld fillet thickness and bolt diameter inputs had the  

largest influence on the resultant shear stress with the  

largest R2 value of 1.0 and 0.99 respectively. 

A Response Surface Model (RSM) was employed to model  

the performance relationship between weld fillet thickness of

the end plate and bolt diameter, enabling the optimisation of 

these design parameters  to achieve  optimal  outcomes  

in terms of structural performance, weight efficiency, cost,  

and embodied carbon (CO₂), shown in figure 5. 

 

 

Fig.5 Response Surface Model (Weld Fillet thickness & Bolt  

    Diameter) 

 

5. Concept Design Selection using PROVEN tool 
 

Previous research carried out by the author (Georgiou. A, 

2015) developed a mathematical tool ‘PROVEN’ (Product 

Optimisation Value Engineering) as part of a completed PhD, 

to aid the concept design selection process using an attribute 

driven approach. The findings of the PhD were presented 

at  several  global  sustainability  conferences  with   

published work featuring in two published journals. The 

PROVEN tool was tried and tested within the Automotive and 

Construction industries for the identification and selection of 

an optimised concept design that proved to be very useful.  

 

The PROVEN approach complements the application of the 

new ANN, as the predicted outputs for bolted steel connector 

designs were assessed against other alternative designs to 

determine the most optimal design in meeting key 

performance attributes. This involved a prioritisation of key 

attributes to include structural integrity, sustainability, cost and 

versatility for the selection of steel connections, considered as 

part of this research study. The following theoretical steps of 

the PROVEN framework were applied to determine an optimal 

design for a bolted steel connector.   

 
 
 
 

5.1 Value Equation 
 

The relative value of a product as a result of a single 

attribute at level g located between 𝒈𝑪  (critical) and 𝒈𝑰 

(ideal) is given by Cook’s adapted value equation 13 

 𝒗(𝒈) =   [
(𝒈𝑪−𝒈𝑰)𝟐−(𝒈−𝒈𝑰)𝟐

(𝒈𝑪−𝒈𝑰)𝟐−(𝒈𝟎−𝒈𝑰)𝟐]  𝜸          (13) 

where:  

• 𝑣(𝑔) is the customer perceived value of a product attribute 

with performance 𝑔; 

• 𝑔𝐼 and 𝑔𝐶  are the ideal and critical value of the S-model 

curve for a performance measure;  

• 𝑔0 is the performance of the baseline vehicle; 

• 𝛾 is a weighting factor representing the importance of the 

product attribute to the customer.  

As attributes tend to have different units of measure, equation 

13 normalises all values to 1.0 allowing for an easier 

comparison to be made particularly with a rather complex 

system. ‘The ideal point ‘𝒈𝑰’ of the value curve is defined as 

the performance level at which the derivative of the value 

curve reaches zero. This means that any further improvement 

in this performance measure does not improve the customer-

perceived value of a product attribute. The critical point ‘𝒈𝑪’ 

is defined as the performance level at which the value curve 

crosses the performance axis, meaning that at this point or 

beyond the performance of the product is so poor that the 

customer perceives the product to have absolutely no value’ 

shown in figure 6 (Cook, 1997). 

 

 

 

 

 

 

 

 

 

 

    Figure 6: Relative Value Attribute (Cook, 1997) 

 
5.2 Relative Value Index Model (RVI) 
 

The Relative Value Index (RVI) is a mathematical model 

based on the Taguchi’s loss function, adapted from statistical 

process control methods. The RVI is more meaningful as 

actual data is derived from each of the attribute performance 

parameters to generate a value index that can be used to 

compare between various attributes where units of measure 

maybe different (Downen et.al., 2005). 

The total value of a product taking into account as many 

attributes as required can be calculated using a Relative Value 

Index (RVI) based on Taguchi’s adapted loss function, 

equation 14. 
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𝑹𝑽𝑰 𝒊 =
𝒗(𝒈𝒊𝟏)𝜸+𝒗(𝒈𝒊𝟐)𝜸+𝒗(𝒈𝒊𝟑)𝜸+⋯𝒗(𝒈𝒊𝒏)𝜸

𝒏
       (14)      

The exponential weighting factor ‘𝜸  ’ reflects the relative 

importance of each attribute to the overall product RVI of the 

attributes 𝒈𝒊 and n represents the number of concept designs 

to be evaluated. The multiplicative relationship between the 

attributes means that a specific product attribute depends not 

only upon its own level but also on the levels of the other 

attributes (Downen et.al., 2005). The RVI is useful for the 

assessment of concept designs as it uses a data-driven 

approach. 

 
5.6 ANN and PROVEN Integration 

 

The new ANN developed as part of this research study 

complements the PROVEN methodology by providing rapid, 

accurate shear stress (kN) predictions of bolted connections, 

which PROVEN uses to evaluate and rank design options 

using a multi-attribute performance driven process, including 

cost and embodied carbon emissions.  

This synergy enables the selection of an optimised bolted steel 

connection design that minimises embodied carbon, through 

reduced material weight and cost while maintaining structural 

integrity under load conditions. The ANN calculates the non-

linear predictive modelling, while PROVEN applies a data-

driven, multi-attribute framework for holistic optimisation, 

aligning with sustainability goals, UN SDGs 9 and 11.  

The workflow diagram shown in figure 7 displays the 

integration of the ANN output (shear stress kN) with 

PROVEN. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: ANN-PROVEN Integration 

5.3 Design Selection using PROVEN  
 

The application of PROVEN was used to assist in the 

selection of five competing bolted steel connector designs, in 

identifying the most optimal design, shown in table 6. 

Using Cook’s adapted value Equation 13, and the adapted RVI 

Equation 14; by substituting in the performance attribute 

values for each concept design, provides the overall 

assessment for each design, normalised to a value of 1.0.   

The first step of PROVEN was to define the range of  

each   attribute  bound  relevant  for  bolted   steel  

connections in terms of the critical value, a target value

and an   ideal value. The following attribute  bound   

settings  were  defined  through  the  DoE test  runs 

performed, shown in table 4. 

 

Table 4; Attribute Bounds defined for Bolted Steel  

connections derived from DoE’s 

 

 

 

 

 

 

The weighted values () featured in table 4 are derived 

from regression analysis, apart from the weight, cost  

and CO2 attributes which have all been set to a  

maximum of 1, as these attributes are inter-related, as  

lowering the overall weight would reduce the cost and  

lower embodied carbon CO2 emissions (IStructE, 2025).  

As an example, regression analysis for shear  

strain () has been carried out as shown in figure 8.  

It must be noted; the bolt size and number of bolts  

were chosen as prime parameters with the largest  

influence on the shear stress of a steel connector.  

Other factors such as end plate thickness and the size  

of the plate all play a role and fixed assumptions have 

been made as part of the regression analysis which  

includes a total of four bolts (2 rows of two bolts),  

end plate thickness of 8mm and plate size of 200mm  

x 200mm.  

 

 

 

 

 

 

 

 
 

Fig. 8; Regression Analysis for Shear Strain () vs.  

Bolt size (mm) 
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5.4 Case Study using PROVEN 
 

As a demonstrative case, Concept Design 1 (table 6) will 

be evaluated against the moment capacity (kNm) using the 

PROVEN methodology. The same procedure is subsequently 

applied to all other attributes and concept designs. 

 

Step 1: Using Eq.13, and substituting the Moment (kNm) 

attribute bounds 𝒈𝑪 = 𝟐𝟏𝟓,  𝒈𝑰 = 𝟖𝟎, 𝒈𝟎 =  𝟏𝟎𝟎 from 

table 4 and using the achieved Moment (kNm) performance 

value from table 5 for Concept design 1 (𝒈 = 83.6 kNm), 

(𝜸 = 𝟎. 𝟗𝟑𝟒𝟑) gives; 

     

[
(215−80)2−(83.6−80)2

(215−80)2−(100−80)2 ] 0.9343 = 0.95 (RVI) 

 

The calculated 0.95 relative value index corresponds to the 

RVI as shown in table 6 circled in red. As Cook’s RVI 

equation normalises all calculated values to 1.0, in the case of 

the Moment attribute for Concept design 1, it is 95% efficient 

in meeting the moment performance target.  

 

Step 2: To assess all attributes for all designs with a 

normalised value to 1.0, the Relative Value Index (RVI) 

equation 14, is used to calculate the overall rating of each 

design.  

 

The RVI equation effectively adds all individual attribute 

relative value index’s and the resultant RVI is divided by the 

total number of attributes assessed. For concept design 1, the 

RVI equation is as follows; 

 

0.94+1.28+0.95+0.87+0.86+0.34+-0.16 / 7 = 0.73 

 

The same procedure is then carried out assessing each concept 

design against the performance attributes. The results as 

indicated in table 6, revealed concept design 2 scored the 

highest total RVI for all assessed attributes scoring 0.98, 

mainly attributed to achieving the lightest weight design, most 

cost effective and best in class for CO2 sustainability. Concept 

design 5 scored the lowest RVI of 0.5, making this design the 

worse performing in meeting the overall required attribute 

targets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: Inputs & Outputs of five concept designs of bolted steel connections  
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5.5 Design Optimisation  
 

To identify the concept  design  for  achieving the 

highest performance targets in terms of; shear stress,   

shear-strain,moment and rotation, new  attribute  bounds

are defined shown in table 7. This scenario may suit a 

specific application where extreme boundary conditions  

require high shear stress resistance, leaving minimal    

opportunity to optimise weight,cost, and CO₂ emissions. 

 

Table 7: Updated Attribute Bounds for Maximum      

Steel Connector Performance 

 

 

 

 

 

Steps 1 & 2 of the PROVEN methodology were run  

again with results presented in table 8. Concept  

design 3 scored the highest total RVI of 0.77 and  

concept design 2 was the next favourable design 

alternative with an RVI of 0.74. As the aim was to  

identify a design to deliver high structural performance 

attribute values, this did come at an increase in cost,  

weight and CO2 even though these values are lower for 

concept design 2. This is due to requiring more       

material such  as larger  bolt diameters, thicker weld   

fillet and end plate thickness that all add to the weight, 

cost and CO2 attributes.(Regan, C. 2018; Sabatka et al. 

2015; Stark, J. 2023). 

The results presented as part of the PROVEN  

application in the selection of steel connection design  

proved to be very useful in identifying the most       

optimal design using an attribute driven approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This creates a substantially optimised product offering to the  

market, minimising cost and component weight with 

associated sustainability advantages in lowering embodied 

carbon emissions.  
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: Bolted Steel Connection Design Appraisal using PROVEN 

 

 



 

Artificial Neural Network Modelling of Moment-Resisting Bolted Steel Connections using an attribute driven approach 

 

doi: 10.1006/efs.xxxx.xxxx                                                                                      ISSN: 2753-4693 

 

 

 

 

 

 

 

 

 

 

 

 

6. Comparative Case Study: ANN-PROVEN vs. 

Component Modelling for Bolted Steel Connection Design 

 

To demonstrate the sustainability advantages for carbon 

reductions achieved with the ANN-PROVEN approach vs. 

traditional Component Modelling (CM), a comparative case 

study has been carried out for a bolted end-plate beam-column 

connection under shear load.  

The load condition entailed a beam-column bolted connection 

under a 200 kN shear force within a multi-storey office 

building. The load scenario considers steel beams and 

columns of identical dimensions, each connection secured 

with four bolts. The results of the ANN-PROVEN 

methodology vs. CM can be seen in table 9. 

The analysis indicates that the CM method resulted in a bolt 

diameter of 20mm paired with a fillet weld of 16mm, whereas 

the ANN-PROVEN method had chosen a thicker weld of 

20mm and a reduced 16mm bolt diameter. This adjustment 

accounted for a net reduction in embodied carbon and weight 

of approximately 15% and a 16% cost reduction.  

For a building featuring 200 bolted steel connections, with 

four bolts per connection, this translates to a cumulative net 

weight reduction of 47.2 kg and a total embodied net carbon 

saving of 87.32 kgCO₂e/kg without compromising structural 

integrity and safety.  

The ANN's rapid processing capability enables the assessment 

of thousands of design iterations, while PROVEN's attribute 

driven assessment method identifies trade-offs with slightly 

thicker welds in exchange for smaller diameter bolts to meet 

the structural integrity requirements. Alternatively, re-

executing the CM to explore these trade-offs is feasible but 

would be highly time-intensive to identify an acceptable 

optimisation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8; Bolted Steel Connection using PROVEN for Shear Stress, Shear Strain, Moment and Rotation Prioritisation  
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6. Conclusions 

The integration of the ANN with the PROVEN 

methodology establishes a systematic, evidence-based 

approach to optimise bolted steel connection designs. This 

framework enhances performance, reduces material 

consumption, and promotes sustainability through efficient 

and data-driven design decisions.  

The ANN significantly shortens processing time compared 

with conventional methods, where structural engineers 

manually adjust parameters in FEM or component-based 

models, a process that is both time-intensive and impractical. 

The ANN output feeds directly into the PROVEN 

methodology to evaluate and rank design options using a 

multi-attribute performance driven process, that considers 

cost and embodied carbon emissions, enabling the selection 

of lightweight, cost-effective, and structurally sound 

connector configurations. 

The ANN’s deep learning phase successfully mapped non-

linear input relationships, reducing error margins to an 

acceptable level. Statistical analysis confirmed the ANN’s 

accuracy against component modelling software, with an 

MSE of 0.9 and variance of 1.03, demonstrating its ability to 

learn real-world non-linear patterns. The PROVEN approach 

prioritised attributes through regression analysis, aiding 

sustainable design optimisation and selection, though a 

limitation is the ANN’s challenge with unique load cases, 

requiring FEM and physical testing for validation. 

The ANN delivered consistent and precise outcomes across 

60 DoE tests, achieving a robust R² of 0.9977 for shear stress 

(kN) predictions, within the defined boundary conditions of 

the specific load case of this study. Overfitting risks were 

mitigated through k-fold cross-validation, while the DoE 

framework and stratified sampling ensured statistical 

robustness and representativeness. However, the small dataset 

size could limit the model’s ability to generalise across diverse 

load cases outside the boundary conditions of the study or 

unique connection designs. Further research can explore 

collecting larger datasets via experiments, sensitivity analysis 

and enhanced k-fold validation to evaluate input impact and 

improve model robustness. Expanding the dataset through 

these methods will strengthen the ANN’s generalisability 

beyond the defined boundary conditions and ensure greater 

reliability across diverse structural applications.  

In conclusion, the combined ANN and PROVEN approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

offer a reliable method to optimise bolted steel connector 

designs during the conceptual phase, minimising processing 

time. This research offers a substantial contribution to the 

field, with practical implications for design decisions, as 

evidenced by the experimental testing phase. 

Future research could expand to hybrid connections (e.g., 

timber-steel or concrete-steel) and automate the process with 

a Python script and Gradio interface for broader applicability 

across varied boundary conditions. 
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