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1. Introduction 

 

The splicing of reinforcement bars is a standard practice 

used in concrete structures, as it is practically impossible to 

have continuous reinforcement bars in concrete elements due 

to various reasons such as steel detailing, fabrication, and 

transport limitations. Lap splicing, which involves the 

lapping of two parallel bars of sufficient length, has long 

been studied as an economical and effective method of 

splicing (ACI Committee 408, 2003). 

In recent years, the required length of reinforcement laps 

prescribed by building codes has increased significantly from 

previous design recommendations, such as the now-

superseded UK code BS 8110-1. This paper is motivated by 

the current revision of Eurocode 2, which is due to be 

published in 2023. The draft revision of Eurocode 2 for laps 

and anchorage is heavily influenced by the recommendations 

of the fib Model code 2010 and fib Bulletin 72. 

For context, the fib Model code 2010 requires a 

considerably longer lap length than Eurocode 2, which many 

UK practitioners find excessive compared to previous UK 

practice. Any increase in lap length is an issue for UK 

designers, who already find that the current Eurocode 2 

reinforcement detailing requirements are complicated and 

make the design costly and unsustainable (Micallef and 

Vollum, 2017). 

The flexural capacity of reinforced concrete (RC) beams, 

with respect to the bond between the reinforcement and 

concrete, that have been lap spliced in tension under ultimate 

load is a matter of concern since it is crucial to the safety and 

strength of the RC beam (Cairns, 2016). In this regard, most 

design codes such as the American Concrete Institute and 

Eurocode 2 specify different requirements for the design of 

the minimum required lap splice for a certain bar diameter. 

Various factors have been ascribed to lap splice failure, such 

as the bond between the concrete and reinforcement, 

concrete compressive and tensile strength, inadequate 

concrete cover, and lap splice length (Chu and Kwan, 2018; 

Lagier et al., 2015). The identified factors are based on the 

Eurocode 2 requirements. In recent years, the flexural 

capacity and behaviour of RC beams with laps located at the 

tension reinforcement region have been extensively 

investigated. Lagier et al. (2015) studied the bond strength of 

an ultra-high-performance fibre RC specimen lap spliced in 

tension using the Canadian design code. Their results suggest 

that splitting failure in concrete beams due to reinforcement 

laps could be attributed to inadequate tensile properties of the 

concrete cover, which is a function of the overall strength of 

the concrete. 

Diab (2008) experimented on 12 normal strength 

concrete beam specimens, considering variables such as 

type, spacing, shape of spacing, and shape of transverse 

reinforcement in the lapped region embedded in normal 

strength concrete, among others. He concluded that there was 

a drastic increase in the ductility of beams when transverse 

reinforcement was used. Mousa (2015) studied the flexural 

behaviour and ductility of high strength concrete beams with 

tension lap splice using the American code (ACI) and found 

that the bond strength of the lapped reinforcement bars was 

mainly dependent on the steel yield strength, diameter of 

reinforcement, concrete cover, shape of reinforcement lap 

ends, surface of the reinforcement bar, and reinforcement lap 

length. Deng, Ma, et al. (2021) and Deng, Li et al. (2021) 

studied the flexural and shear behaviours of RC reinforced 

beams strengthened by the prestress carbon fibre-reinforced 

polymer prestressed concrete prisms. The experimental 
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studies have revealed that the bond strength plays an 

important role in the ultimate strength of the beams. Ahmed 

(2013) studied the effect of the splice length, concrete 

compressive strength, and the amount of transverse 

reinforcement within the lap splice zone. The outcomes 

indicated that providing shear links within the lap splice 

region increased the beam’s ductility and ultimate load 

capacity. 

This study aims to investigate the impact of varying lap 

joint length on the structural performance of RC beams under 

ultimate load by using LUSAS finite element software to 

simulate a four-point loading test under monotonic loading 

until failure (see Figure 2). The variables utilised in this 

computational study conform to Eurocode 2, including the 

reinforcement bar diameter (𝑑𝑏), concrete design tensile 

strength (𝑓𝑐𝑡𝑑), concrete cover (𝑐𝑑), and yield strength of the 

steel (𝑓𝑦). 

 

 

2. Methodology 

The study analysed five series of reinforced concrete 

beams (A, B, C, D, and E) with lap splices located in the 

maximum moment zone, as shown in Figure 1 and detailed 

in Table 1. The beams with varying lap lengths had 

dimensions of 1700 mm in length, 150 mm in height, and 150 

mm in width, with a span-to-depth ratio of 11.3 for all series 

except E and F, which had a zero-shear span distance of 500 

mm and 300 mm, respectively, with the same span-to-depth 

ratio. 

As shown in Figures 2(a), (b), and (c), each sample's 

tension face was reinforced with three bars, 12 mm in 

diameter, lapped with bars of the same diameter. All laps 

were located in the same section, as permitted by MC2010 

and BS EN 1992-1-1:2004, but they were not staggered as 

recommended by Eurocode 2. For all series except D, 

nominal 8 mm diameter shear links were provided at 100 mm 

spacing, while for series D, 50 mm link spacing was used. 

The transverse reinforcement met the requirements of 

Eurocode for all series. 

Three different concrete grades (C30, C45, and C60) 

were used for all series, and the two-point loads were fixed 

at a distance of 700 mm for all series except E, where the 

distance was decreased to 500 mm to accommodate the lap 

splices within the loading points. 

 

 

 

 
Fig. 1 Typical laboratory four-point loading arrangement 
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3. Experimental Program 

 

The experimental beam specimens in this study were 

simply supported and subjected to four-point loading. The 

beam had a shear span of 700 mm and a span of 1500 mm 

between supports, as shown in Figure 2. The beams were 

loaded incrementally until failure was reached. They were 

designed in accordance with Eurocode 2 and had a 

compression reinforcement consisting of two φ 8 mm bars 

and a tension reinforcement of three φ 12 mm bars. The 

beams were also equipped with shear links spaced at 100 mm 

intervals, consisting of 8 mm diameter bars.  

 

3.1 Materials 

All specimens were tested with concrete mixed in the 

University of West London concrete laboratory, using the 

same mix design for all samples (see Figure 4). The concrete 

had a target mean compressive strength of 30 N/mm² and was 

composed of coarse aggregate (10 mm gravel), fine 

aggregate (sharp sand), and cement (blue circle general 

purpose) in the following proportions: aggregate/cement 

ratio of 4.2, coarse/fine sand ratio of 1, and water/cement 

ratio of 0.45 (as shown in Fig. 4 and Table 2). 

 
Fig. 4 Details of concrete materials 

 

Series Test 

ID 

Bar 

diameter 

(mm) 

Lap 

length 

(mm) 

Concrete 

grade 

Link 

spacing 

(mm) 

Depth 

(mm) 

Distance 

between 

point loads 

(mm) 

Span/depth 

ratio 

 

 

 

A 

4P-

Control 

12 n/a C30 100 150 700 11.3 

4P- 30∅ 12 360 C30 100 150 700 11.3 

4P- 40∅ 12 480 C30 100 150 700 11.3 

4P- 50∅ 12 600 C30 100 150 700 11.3 

4P-EC2 

(62∅) 

12 744 C30 100 150 700 11.3 

 

 

B 

4P- 30∅ 12 360 C45 100 150 700 11.3 

4P- 40∅ 12 480 C45 100 150 700 11.3 

4P- 50∅ 12 600 C45 100 150 700 11.3 

4P-EC2 

(62∅) 

12 744 C45 100 150 700 11.3 

 

 

C 

4P- 30∅ 12 360 C60 100 150 700 11.3 

4P- 40∅ 12 480 C60 100 150 700 11.3 

4P- 50∅ 12 600 C60 100 150 700 11.3 

 

 

D 

4P- 30∅ 12 360 C30 50 150 700 11.3 

4P- 40∅ 12 480 C30 50 150 700 11.3 

4P- 50∅ 12 600 C30 50 150 700 11.3 

4P-EC2 

(62∅) 

12 744 C30 50 150 700 11.3 

 

 

E 

4P- 30∅ 12 600 C30 100 150 500 11.3 

4P-40∅ 12 480 C30 100 150 500 11.3 

4P-50∅ 12 600 C30 100 150 500 11.3 

4P-EC2 

(62∅) 

12 600 C30 100 150 500 11.3 

 

 

F 

4P- 30∅ 12 300 C30 100 150 900 11.3 

4P- 40∅ 12 480 C30 100 150 900 11.3 

4P- 50∅ 12 600 C30 100 150 900 11.3 

4P-EC2 

(62∅) 

12 744 C30 100 150 900 11.3 
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3.2 Details of the reinforcing bars 
 

The mild reinforcing bars utilised in the test program 

were rib bars with diameters of 8 mm and 12 mm, 

conforming to BS EN 1992-1-1:2004, which were sourced 

from a reputable local supplier (Metal4U). The reinforcing 

steel bars were supplied in 6 m lengths and were cut into 

various lengths in the laboratory, with careful consideration 

given to excluding any damaged bars from the lapped section 

of the beam specimens. The steel bars were used in their as-

delivered state without any surface preparation or special 

cleaning. The link cages were fabricated using 8 mm 

diameter reinforcing bars sourced from the laboratory's 

stocks. 

 

3.3 Casting procedure 
All the beams were cast using the same mix design. The 

concrete mix was prepared using an ELE Concrete Mixer 34-

3540, and it was mixed for 5 minutes to ensure proper 

homogeneity. After the concrete mix was completed, a slump 

test was conducted according to British Standard using the 

'ELE international Slump testing kit' to assess the workability 

of the concrete. 

Once the slump test was completed, the beams were cast 

separately using marine plywood as the formwork. The 

tension rebars were horizontally placed in the beams. The 

reinforcement cage was positioned within the mould and held 

in place during casting by a 15 mm concrete cover connected 

to the sides and bottom of the cage. In the lap test specimens, 

the lapped longitudinal reinforcement was positioned at the 

bottom of the formwork. 

The concrete was cast in two layers, with each layer being 

compacted using a mechanical vibrator poker to ensure 

proper consolidation. The top surface of the beams was then 

smoothed off using a stainless-steel float to achieve a smooth 

finish, as shown in Figure 5. 

 

 

 

Three-cylinder samples (150 × 300 mm) and three small 

beam samples (150 × 150 × 750 mm) were cast 

simultaneously with the main beams using the same fresh 

concrete. The cylinder samples were used for compressive 

strength testing to determine the compressive strength of the 

concrete, while the small beam samples were used for tensile 

strength testing. 

Compressive strength testing was conducted on the 

cylinder samples in accordance with standard procedures to 

Table 2 Concrete Mixture 

W/c 

Total 

Aggregates 

(kg) 

Water 

% of Mix 

Water 

quantity 

(L) 

Cement 

% of Mix 

Cement 

quantity 

(Kg) 

Coarse 

% of Mix 

Coarse 

quantity 

(Kg) 

Cement 

% of Mix 

Cement quantity 

(Kg) 

0.45 106.9 7.85 8.40 19.64 21.0 49.11 52.50 27.23 23.39 

 

 
Fig. 5 Sample casting 
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assess the concrete's ability to withstand compression. 

Tensile strength testing, on the other hand, was performed on 

the small beam samples to evaluate the concrete's capacity to 

resist tension. 

By casting and testing these additional samples in parallel 

with the main beams, a comprehensive assessment of the 

concrete's performance characteristics, including both 

compressive and tensile strengths, was obtained to ensure 

reliable and accurate results for the overall experimental 

program. 

 

4 Finite Element Model 
The beam model was designed to simulate a four-point 

bending test configuration, where the loads were applied 

through a two-point load in displacement control, as 

illustrated in Figure 3. Finite element software (LUSAS 

version 2018) was utilized to model the analyzed beams in 3-

D. In order to focus on the maximum moment region of the 

beams, where the reinforcing bars are lapped, the symmetric 

requirement of the constraint and load was not utilized in the 

modeling process. This approach was chosen as it aligns with 

the main focus of the current study. Implementing a 

symmetric boundary condition to the modeled half of the 

beam would deviate from the scope of this study, and 

therefore was not employed in the analysis. 

 

4.1 Geometric Nonlinearity 
The implicit of small displacements in linear elastic 

analysis may not be valid in many problems, and to obtain 

accurate results, the impact of geometric variation of the 

structure during deformation, also known as geometric 

nonlinearity, must be considered. In LUSAS software, there 

are five methods available for accounting for geometric 

nonlinearities: Updated and Total Lagrangian, Eulerian, co-

rotational, and P-Delta. 

The Updated Lagrangian formulation continuously 

updates the structure's geometry with reference to the end of 

the last converged increment. The Total Lagrangian 

formulation relates the displacement of the structure to the 

initial geometric configuration throughout the solution. The 

Eulerian formulation has its reference in the current 

configuration, while the co-rotational formulation relates 

large displacement effects to the set axes that follow and 

rotate with the elements. The P-Delta method takes into 

account the interaction between the vertical and horizontal 

sway loading. 

In this research, the Total Lagrangian technique has been 

employed. This approach has the advantage of formulating 

the element shape functions only once at the beginning of the 

analysis, which makes the method more computationally 

efficient compared to other methods that may require 

repetitive computations during the analysis. 

 

4.2 Element Type 
In the model, the concrete elements were represented 

using 3D isoperimetric solid continuum elements with 20-

noded elements, allowing for three degrees of freedom (U 

and V displacements in both directions) at each node. Full 

numerical integration, specifically 3 × 3 Gaussian for 

quadrilateral elements, was utilized for accurate calculations. 

On the other hand, the reinforcement was modelled using 

a quadratic 3D bar element (BRS3) with three nodes. This 

element only accounts for longitudinal forces, lacks bending 

stiffness, and transfers only axial stress. The displacement U 

and V at each node are considered as variables, and the cross-

sectional area is consistent with the area of the reinforcement 

steel. The interface between the concrete and reinforcing bar 

assumes a perfect bond, and the nodal degrees of freedom are 

superimposed at this interface. 

Figure 6(a) and (b) display the finite element used in the 

model, representing the BRS3 and HX20 elements. 

 
Fig. 6 Details of bar element BRS3 and plane stress 

element HX20 (LUSAS, 2016) 

 

 

The embedded modelling approach was employed in this 

study to simulate the steel bars. Both the reinforcement and 

concrete were represented using the same type of elements, 

with identical degrees of freedom and shape functions, as 

well as an equal number of nodes. Consequently, the 

embedded method involved integrating a one-dimensional 

bar into either two-dimensional or three-dimensional 

elements, as depicted in Figure 7. 

c

 
Fig. 7 Embedded reinforcing bar element in the local and 

global system 

 

The computation of embedded reinforcing bars is carried 

out by integrating along the curves that represent the 

segments of the reinforcing bars within each element. 

Subsequently, the embedded reinforcing bar elements are 

superimposed onto the concrete elements in question. Unlike 

traditional methods, the embedded reinforcement 

representation does not require the reinforcement bars to 

match the boundary of the concrete elements. Instead, the 

reinforcement bars pass through the concrete elements in an 

arbitrary manner, allowing for flexibility in the 

reinforcement layout during finite element mesh generation. 

One significant advantage of the embedded 

representation is that it enables the simulation of perfect bond 

between the steel and concrete, as both the concrete and 

reinforcing bar elements are assigned the same degrees of 

freedom. Thus, bond slip can only be implicitly simulated by 

modifying the steel or concrete constitutive relations. 
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However, it is important to note that this method requires the 

use of specific reinforcing bar elements. 

It should be emphasised that the embedded representation 

is the only suitable approach for accurately simulating lap 

joints or lap/splice length using LUSAS, in order to address 

the objectives of this research. 

 

4.4 Concrete Material 
Several concrete material models are available in LUSAS 

for simulating the behavior of structural concrete. Two 

commonly used models are Model 86, which is a linear 

model with creep and shrinkage, and Model 109, which is a 

smoothed multi-crack model. Model 86 is based on a 

simplified linear approach with creep and assumes that the 

service stress in the concrete is not exceeded. On the other 

hand, Model 109 considers nonlinear behavior in 

compression and tension, including cracking and crushing. 

Model 109, based on continuum damage mechanics, 

allows for the simulation of the nonlinear stress-strain 

behaviour of concrete up to failure. It considers two failure 

modes: crushing in compression and cracking in tension. The 

material behaviour is described in terms of elastic, plastic, 

tensile, and compressive properties. In tension, the strain-

stress behaviour for concrete is simulated as a nonlinear 

relationship up to the ultimate tensile strength, followed by a 

gradually unloading branch that accounts for tension 

stiffening effects (Figure 9). Tension stiffening refers to the 

phenomenon in which concrete continues to withstand 

certain tensile loads despite the formation of cracks, with a 

slow decrease in tensile strength with an increase in tensile 

strain. The unloading branch of the stress-strain model in 

LUSAS can be represented using a nonlinear, linear, or 

bilinear relationship. 

In this study, the stress-strain relationship proposed by 

LUSAS (2016) is used for the unloading failure branch, as 

described in equation (1) and illustrated in Figure 8. This 

nonlinear equation incorporates control parameters such as 

the associated strain (εti), stress at first damage (fti), strain at 

the effective end of the curve (ε0), uniaxial strain (ft), and 

strain at peak stress (εk), as shown in Figure 8 in terms of 

fracture stress (fs) and the strain parameter (ψ). This function 

has been widely used by many researchers in previous 

studies, providing reliable predictions of experimental 

response (e.g., Bencardino and Condello, 2014; Yuan et al., 

2016; Guizani et al., 2017; Fib Model Code Concr. Struct. 

2010, 2013; do Carmo & Lopes, 2005; LUSAS, 2015). 

 

4.5 Solution Approach 
The solution of the nonlinear equations in LUSAS is 

achieved using a Newton-Raphson based iterative technique. 

LUSAS offers two approaches for this purpose: (1) modified 

Newton-Raphson and (2) full Newton-Raphson. The main 

difference between the two techniques is that modified 

Newton-Raphson reuses a previous stiffness matrix, whereas 

the stiffness matrix is updated after each iteration in the full 

Newton-Raphson technique. This leads to faster convergence 

in the full Newton-Raphson method as the stiffness matrix is 

more accurately updated at each iteration. On the other hand, 

the modified technique may require more equilibrium 

iterations and thus have a slower convergence rate due to less 

accurate stiffness prediction. However, with a realistic initial 

estimation and the use of acceleration methods such as line 

searches, the modified technique can also be quite rapid. 

The incremental-iterative solution in LUSAS is based on 

the Newton-Raphson iteration, as used in this paper, where 

the load is slowly increased in increments to achieve 

equilibrium at each increment. LUSAS provides three 

incremental procedures: displacement-controlled, arch-

length controlled, and load methods. It is also possible to 

combine the load and displacement methods with the arch-

length method, allowing for changes in the iteration method 

at a given point. The incremental solution procedure can be 

specified in three ways: automatic, through predefined load 

curves, and manual. In this research, the automatic procedure 

was used for actual analyses, where LUSAS automatically 

reduces the step length by a predefined factor if convergence 

is not achieved within the increment after a specified number 

of iterations. This means that the increment size is 

automatically adjusted by LUSAS based on the convergence 

history, with a maximum number of iterations permitted 

before automatic step reduction set to 10. It should be noted 

that LUSAS allows the user to control the incrementation by 

specifying the starting increment size and the maximum 

change in increment size. 

There are several convergence criteria used in the 

program to monitor convergence, and the adoption of 

suitable convergence criteria is crucial. In this research, the 

following criteria were used as reference: Euclidean 

incremental displacement norm (dtnrm = 1.0), Root mean 

square of residuals (RMS = 108), Work norm (wdnrm = 108), 

Maximum absolute residual (MAR = 108), Euclidean 

displacement norm (dpnorm = 1.0), and Euclidean residual 

norm (rdnrm = 0.1). If the tolerance limit is imposed, 

convergence of the generic load increment is considered 

satisfactory based on these parameters. 

𝑓𝑠 = 𝑓𝑡𝑖 . 𝑓𝑢𝑐(𝜍) = (1 − 𝜔(𝜍))𝐸𝜍 (1) 

 

With 

 
Fig. 8 Damage evaluation function (softening curve) 

LUSAS, 2016) 

 

 

𝜔 = 1 −
𝜀𝑡𝑖

𝜍
𝑒−𝑐1𝜂(𝑎 − 𝑏𝑒−𝑐1𝑚𝜂 − 𝑐𝑒−𝑐1𝑚𝑝𝜂)                                                                             (2) 
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The form used to derive the contact is the direct 

relationship between 𝑓𝑠 and 𝜍: 

𝑓𝑠 = 𝑓𝑡𝑖𝑒
−𝑐1𝜂(𝑎 − 𝑏𝑒−𝑐1𝑚𝜂 − 𝑐𝑒−𝑐1𝑚𝑝𝜂)                                       (3) 

 

In which 𝜂 =
𝜍−𝜀𝑡𝑖

𝜀0−𝜀𝑡𝑖
 

C and p are both assumed to be fixed at 5. The constants 

a, b, c, and m are determined from the following four 

conditions. 

𝑓𝑠 = 𝑓𝑡𝑖           at 𝜂 = 0                              (4) 

 

𝜕𝑓𝑠

𝜕𝜍
= 𝐸          at 𝜂 = 0                              (5) 

 

 

𝑓𝑠 = 𝑓𝑡         at 𝜂 = 𝜂𝑘 
 

 

(6) 

 

𝜕𝑓𝑠

𝜕𝜍
= 0         at 𝜂 = 𝜂𝑘 (7) 

 

The mean uniaxial tensile strength ( 𝑓𝑐𝑡𝑚 ) can be 

calculated as follows (BS EN 1992-1-1, 2004): 

𝑓𝑐𝑡𝑚 = 0.3(𝑓𝑐𝑘)
2

3 Where 𝑓𝑐𝑘 = is the cylinder 

characteristics strength 
(8) 

 

To estimate the (𝑓𝑐𝑡𝑚) from the mean flexural strength 

𝑓𝑐𝑡𝑚,𝑓𝑙, the following expression is adopted: 

𝑓𝑐𝑡𝑚 = 𝛼𝑓𝑙 × 𝑓𝑐𝑡𝑚,𝑓𝑙  (9) 

 

Where: 

 

𝛼𝑓𝑙 =
0.06 × ℎ𝑏

0.7

1 + 0.06 × ℎ𝑏
0.7 

(10) 

 

ℎ𝑏 is the beam depth (mm). 

For the compression behaviour, Model 109 requires the 

peak compressive stress (𝜀𝑐) to be estimated as follows: 

𝜀𝑐 = 0.002 + 0.001
(𝑓𝑐𝑢−15)

45
                       

0.002 ≤ 𝜀𝑐 = 0.003 

Where 𝑓𝑐𝑢 = 1.25𝑓𝑐 

(11) 

 

 

 
Fig. 9 Post-failure stress-strain relationship (LUSAS, 

2016) 

 

Similarly, for the compression behaviour, the model 

given in Eurocode 2 (BS EN 1992-1-1, 2004) and the Fib 

Model Code for Concrete Structures (2010) are adopted, 

given by following expressions: 

𝜎𝐶 = (
𝜅𝜂−𝜂2

1+(𝜅−2)𝜂
) 𝑓𝑐𝑚   this equation is valid for  

0 < |𝜀𝑐| < |𝜀𝑐𝑢1| 
(12) 

 

Where: 

𝜀𝑐𝑢1 is the nominal ultimate strain. 

𝜀𝑐1 is the strain at peak stress. 

𝜀𝑐 is the compressive strain in the concrete.  

𝑓𝑐𝑚 is the ultimate compressive strength of the concrete, 

given as: 

𝑓𝑐𝑚 =  𝑓𝑐𝑘 + 8 (𝑀𝑃𝑎) (13) 

 

While the parameters 𝜂  and k are calculated from 

equations (14) and (9), respectively: 

𝐾 = 1.05𝐸𝑐𝑚

|𝜀𝑐1|

𝑓𝑐𝑚

 (14) 

 

 

𝜂 =
𝜀𝑐

𝜀𝑐1
  (𝜀𝑐 < 0) (15) 

 

In which 𝐸𝑐𝑚  is the elastic modulus of the concrete and 

𝜀𝑐1 is the strain at the peak stress and 𝐸𝑐𝑚 calculated from 

equations (16) and (17), respectively: 

𝐸𝑐𝑚 = 22 [
𝑓𝑐𝑚

10
]

0.3

s (16) 

 

 

𝜀𝑐1(0/00) = 0.7(𝑓𝑐𝑚)0.31 ≤ 2.8 (17) 

 

The normal ultimate strain ( 𝜀𝑐𝑢1)  expressed as a 

percentage:  

𝜀𝑐1 (0/00) = 2.8 + 27 [
(98 − 𝑓𝑐𝑚)

100
]

4

 (18) 

 

Model 109 requires assigning the compressive damage 
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parameter at each inelastic strain increment, starting from 0 

for uncracked material and progressing to 1 when the 

concrete completely loses its load-bearing capacity. As 

illustrated in Figure 60, this parameter is determined by 

analyzing the stress-strain diagram of concrete in 

compression, as shown below. 

The effective end of the softening curve parameter (𝜀𝑜), 

if set, is calculated as: 

𝜀𝑐 = 0  for   𝜀𝑜 ≈ 5𝐺𝑓/ 𝑊𝑐𝑓𝑡 (19) 

 

Where 𝑊𝑐 is a characteristic length for the element. 

The fracture energy (𝐺𝑓)  can be determined using the 

following equation: 

𝐺𝑓 = 𝑘𝑏
2 × 𝑐𝑓 × 𝑓𝑐𝑡  (20) 

 

In which 𝑘𝑏 accounts for the reinforcement size related 

to the beam size, while the parameter 𝑐𝑓 considers all the 

secondary effects. The parameter 𝑘𝑏  is determined using 

the following relationship: 

𝑘𝑏 = √
𝑘. (2 −

𝑏
𝐵

)

1 +
𝑏

𝐵10

 (21) 

 

The nonlinear behaviour in compression is governed by 

the following parameters: uniaxial tensile strength, biaxial to 

uniaxial stress ratio (1.15), strain at peak uniaxial 

compression (2.2E-3), dilatancy factor (ψ=-0.1), initial 

relative position of yield surface (0.6), contact multiplier on 

ε0 for first opening stage (0.5), constant in interlock state 

function (0.3), angular limit between crack planes (1.0 rad), 

and final contact multiplier on ε0 (5.0). Further parameters 

are the slope of friction asymptote for damage (μ=0.8) that 

define the surface of local damage and the shear intercept to 

tensile strength (rσ=1.25). These values were adopted based 

on the LUSAS manual recommendations. For the plastic 

phase, the capacity of the cracked concrete to transmit tensile 

stresses (strain softening) is considered as well as the ability 

to transfer shear. The softening behaviour follows an 

exponential descending law based on two parameters: the 

slope at the end of the softening curve (3.5E-3) and the 

uniaxial tensile strength of concrete (2.8 MPa), whose value 

is linked to the behaviour of the ductile element. The input 

parameters for the elastic phase are the Poisson ratio (0.2) 

and the young’s modulus (31000 MPa), calculated based on 

Eurocode 2 (2004). 

4.6 Convergence criteria 
Realistic convergence criteria must be used to end the 

iterative procedure in order for any iteratively based solution 

method to be effective. If the tolerances are too tight, 

computational effort will be wasted obtaining needless 

accuracy, and- if the criteria are too loose, inaccurate results 

will be obtained. Given that the method computes 

incremental displacements by removing out of balance forces 

after each iteration, it seems reasonable to require that these 

factors be verified for convergence to zero. The Euclidean 

residual norm as percentage of the total reactions such that 

𝑌𝑔 =
(Σ∆𝑔1

2)1/2

(Σ∆𝑅1+1
2 )1/2

× 100 (22) 

 

And the Euclidean displacement norm as percentage of 

the total displacement are the two parameters utilised to 

control convergence in the current study 

𝑌𝛿 =
(Σ∆𝛿1

2)1/2

(Σ∆𝛿1+1
2 )1/2

× 100 (23) 

 

To determine when the required accuracy is achieved, 

these values are compared to the input parameters. It is a 

good idea to verify the results after each increment for 

divergence to avoid wasting computer time searching for an 

unachievable solution. This check, like the convergence 

criterion, should be realistic to avoid the problem being 

terminated prematurely. When a certain number of iterations 

has been reached in LUSAS, the residual norm and Euclidean 

displacement percentages are checked. The problem is 

continued if the values are not excessively large (that is more 

than 100), because convergence can be reached in 

subsequent increments. 

5.0 Result and Discussions 
This The load-deflection curves (Figure 10) can be used 

to describe the global response of the tested beams; note that 

the load includes the effect of the steel beam (0.98KN) placed 

on the specimen and the equivalent bending moment owing 

to the self-weight of the tested reinforced concrete beam. 

During the transition from the uncracked to the cracked 

stage, a gradual non-linear behavior could be seen. Within 

the constant moment zone, several vertical cracks developed 

first followed by shear cracks near to the support. Figure 10 

shows the comparison of the numerical and experimental 

results, in terms of loadmidspan deflection curves of the 

beams. The outcome of the experimental investigation shows 

that the control beam failed at the ultimate load of 65.1 KN, 

in a flexural mode with yielding of tension reinforcement, 

followed by crushing of concrete in the compression zone. 

For the finite element model, the control beam analysis was 

stopped because the limit displacement of the control point 

was reached. The experimental outcomes are reproduced in 

a satisfactory manner by the proposed finite element model 

with an acceptable tolerance for the current work (3% for the 

ultimate load values). Usually, the numerical values of the 

loads at the critical stages are slightly lower than the same 

loads detected experimentally. This proves that the 3D-model 

is reliable. 
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5.1 Parametric analysis  

The proposed finite element 2D model was employed to 

examine the impact of varying lap length, concrete grade, 

depth, and link spacing on the structural performance under 

ultimate load. In particular, the parameters considered are as 

follows • Lap length: 30∅, 40∅, 50∅ and EC2 62∅ • Shear 

link spacing: 100 mm and 50 mm. • Concrete grade: 30 

𝑁/𝑚𝑚2, 45𝑁/𝑚𝑚2 and 60𝑁/𝑚𝑚2 • Zero shear distance 

(distance between the two-point loads) The compressive 

strengths were selected based on the concrete grades as 

provided by EN1992- 1-1:2004 (2014). The shear link 

spacing was chosen based on the Eurocode 2 recommended 

value of 0.75d. For each analysis, the value of the uniaxial 

tensile strength has been determined as a function of the 

uniaxial compressive strength employed, based on the model 

given by Eurocode 2 (2004): 𝐸𝑐 = 22(0.1𝑓𝑐𝑚) 0.3. 

 

5.2. Impact of lap length on bar stress 
It is generally assumed that the bar stress is constant 

along the splice length at failure and thus, by association, the 

force is uniformly distributed along the spliced bars (BS EN 

1992-1-1, 2004). Figure 11(a) plots bar stress against the lap-

length-to-bar diameter ratio to depict the relationship 

between bar stress and the lap splice length. Figure 11(a) 

shows that, as the lap-lengthto-bar diameter ratio increases, 

the bar stress increases, which corresponds well with other 

experimental studies (Anwar Hossain, 2008; Kim et al., 

2019; Kim et al., 2013; Yang et al., 2012). This can be 

attributed to the fact that the bar stress is uniformly 

distributed over the reinforcing bar length when the lap 

length is longer. A 107% increase in lap-length-to-bar 

diameter ratio leads to a 2% increase in bar stress as shown 

in Figure 11(a). Opposite results were found for specimens 

with a different concrete grade. Figure 11(b) shows the 

decrease in bar stress of about 0.6% for the 360 mm lap 

length specimens when the concrete grade increased from 

C30 to C60. Whereas in the case of beams with the 480 mm 

lap length, the reduction in bar stress was 0.2% when the 

concrete grade increased from C30 to C45, and a 1.2% 

reduction in bar stress when the concrete grade is further 

increased from C30 to C60. This is because the bar stress 

distribution along the lap length is influenced by concrete 

strength, partly due the slip of reinforcement and weaker 

concrete adjust to differential strain (CIBFIP, 1991; 

Lundgren, 2005). 

 

 

Figure 12 shows the effect of zero shear span distance 

(distance between two-point loads) on the concrete grade 

(Figure 12[a]) and the lapped bar stress (Figure 12[b]). For 

the same lap-length of 360 mm, increasing the zero-shear 

span distance by 40% resulted in a 0.7% reduction in bar 

stress for beams with C30 grade of concrete, as shown in 

Figure 12(a). This shows that zero shear span distance is 

 
 

(a)  Eurocode 2(FE) vs EC2 experiment (b) Load curves of all experimental samples 

Fig. 10 Load displacement response of the beams 

 

 
(a)  Lapped to bar diameter ratio (b) Concrete grade 

Fig. 11 Influence of lapped to bar diameter ratio and concrete grade on bar stress 
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inversely proportional to concrete grade. A similar trend was 

observed when the beams with 500 mm zero shear span 

distance (360 mm, 480 mm, 600 mm and 744 mm) were 

compared with that of 700 mm zero shear span as shown in 

Figure 12(b). However, the trend changed after the zero-

shear span distance was increased to 900 mm as shown in 

Figure 12(b). This shows that the larger the zero-shear span 

distance the lower the lapped bar stress. The bond stress of 

lap splices decreases with increasing zero shear distance, 

irrespective of concrete grade and lap length. 

 

 

5.3. Influence of shear links spacing. 
Beams with smaller shear link spacing showed greater 

lapped bar stress than those with larger link spacing. The 

bond stress and ductility of three similar specimens 30∅, 40∅ 

and 50∅, with the same cover and different shear link spacing 

(50 and 100 mm) were analysed in Figure 13(a) and 13(b). 

The shear link spacing for all the specimens are based on 

Eurocode 2 recommendations. It is evident that, as the shear 

link spacing decreases, the lapped bar stress and the load 

capacity of the beams increase; this behavioral response was 

well captured by the simulations. Figure 13(a) shows the 

graph of lapped bar stress against the shear link spacing. For 

same lap-length to bar diameter ratio of 30∅, Increasing the 

shear link spacing by 100% from 50 to 100 mm resulted in a 

22% increase in lap stress. The same increase was found for 

specimens with different concrete grades. Figure 13(b) 

shows 28% decrease in lapped bar stress for the 30∅ 

specimens when the concrete grade increased from C30 to 

C45. 

 

 

5.4. Bar forces versus strain  
A nonlinear relationship exists between the strain and the 

lap length-to-bar diameter ratio, as shown in Figure (14a). 

This indicates that for every increase in lap length-to-bar 

diameter ratio, there is a similar increase in the obtained 

strain for the RC beam. It can also be suggested that the lap 

length to-bar diameter ratio influences the overall strain of a 

RC beam. This is evidenced by the data trend shown in 

Figure 14(a). Increasing the lap length-to-bar diameter ratio 

from 30Ø to 40Ø resulted in a 215% increase in lapped bar 

strain. A further 25% decrease from 40Ø to 50Ø, decreased 

the lapped bar strain by 0.6%. The effect of concrete grade 

on strain in a RC beam is shown in Figure 14(b). It appears 

that the lapped bar strain has an inverse relationship with 

concrete grade as lapped bar strain decreases with an increase 

of concrete grade. For the same lap length-to-bar diameter 

ratio of 30∅, a reduction of 29% in lapped bar stain is 

observed when the concrete grade is increased from C30 to 

C45 as demonstrated in Figure 14(b). The same pattern is 

noted when the concrete grade is increased from C45 to C60 

Figure 14[b]. Figure 15 shows the effect of force on bar 

strain. Similarly, to the lapped bar stress, there is a nonlinear 

relationship between bar force and lap length. The maximum 

force in pairs of lapped bars decreases with an increase in lap 

length which is typical for the analysed splices and consistent 

with the splice being in a constant moment zone. 

  

(a)  Concrete grade (b) Lapped bar stress 

Fig. 12 Effect of zero-shear span distance on concrete grade and lapped bar stress  

 
 

(a)  Bar force (b) Concrete grade 

Fig. 13 Effect of shear link spacing on concrete grade 
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Fig. 15 Influence of concrete grade on bar force 

 

Figure 15 shows the effect of concrete on the lapped bar 

force. Figure 14(a) shows the inverse relationship between 

the concrete grade and the lapped bar force; an increase in 

zero shear distance results in a decrease in the lapped bar 

force. 

 

6. Conclusions 
 

The purpose of this study was to determine the influence 

of concrete grade, link spacing, load location and lap length 

on the performance of reinforced concrete beam. This was 

achieved by performing experimental testing, and nonlinear 

finite element analyses. The finite element model was able to 

simulate the experimental behaviour of RC beams with and 

without lap splice under four-point bending. Good 

agreements were obtained between the experimental results 

and those of the finite element model in terms of ultimate 

load and deflection curve. Based on the behaviour model, the 

analysis of simulation result, the below conclusions are 

formed. 

• Lapped bar strain and force is directly proportional 

to the increase in lap length-to-bar diameter ratio.  

• Reduction in bar stress was noticed for all the 

analysed beams due to the increase in lap length-to-

bar diameter ratio. Reduction in bar stress was 

approximately 35% when the ratio increased from 

30∅ to 40∅ (33% increase). 

• Reducing the shear link spacing was quite effective 

in delaying the formation of cracks by increasing the 

load carrying capacity of the samples. A comparison 

specimen with 50 mm and 100 mm shear link 

spacing indicated that smaller shear link spacing is 

more effective. 

• Bar stress decreases as the concrete grade is 

increased from C30 to C60 and the reduction for 

samples with lap lengths-to-bar diameter ratio of 40∅ 

and 50∅ were 49% and 46%, respectively.  

• Zero shear span distance is inversely proportional to 

bond stress and bond force. Increasing the zero-shear 

distance by roughly 44% led to a decrease in bar 

stress of about 191% for beams with C30 grade of 

concrete. 

• Increasing lap length beyond 50 diameter lap is 

unsustainable as well as hinders effective pouring of 

concrete and vibrating. As a result of the remaining 

air bubbles, the quality of construction and 

performance may be affected. It should also be noted 

that, while lap splicing is known as the simplest 

splice technique, requiring no additional skills or 

instruments, increasing the lapping length of the 

reinforcing bars can cause rebar congestion and raise 

construction costs. 
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